On local isometries between algebras of C(Y)-valued differentiable maps

被引:0
作者
Hosseini, Maliheh [1 ]
Jimenez-Vargas, A. [2 ]
Ramirez, Maria Isabel [2 ]
机构
[1] KN Toosi Univ Technol, Fac Math, Tehran 163151618, Iran
[2] Univ Almeria, Dept Matemat, Almeria 04120, Spain
关键词
Algebraic reflexivity; Topological reflexivity; Local isometry; 2-local isometry; Differentiable map; SURJECTIVE ISOMETRIES; 2-LOCAL ISOMETRIES; BANACH-ALGEBRAS; AUTOMORPHISMS; REFLEXIVITY;
D O I
10.1007/s13398-022-01251-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be either the real unit interval [0, 1] or the complex unit circle T and let C (Y ) be the space of all complex-valued continuous functions on a compact Hausdorff space Y. We prove that the isometry group of the algebra C-1 (K ,C(Y)) of all C(Y)-valued continuously differentiable maps on K, equipped with the Sigma-norm, is topologically reflexive and 2-topologically reflexive whenever the isometry group of C(Y) is topologically reflexive.
引用
收藏
页数:15
相关论文
共 30 条
  • [1] RIGID FINITE DIMENSIONAL COMPACTA WHOSE SQUARES ARE MANIFOLDS
    ANCEL, FD
    SINGH, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) : 342 - 346
  • [2] Surjective isometries on spaces of differentiable vector-valued functions
    Botelho, Fernanda
    Jamison, James
    [J]. STUDIA MATHEMATICA, 2009, 192 (01) : 39 - 50
  • [3] Cambern M., 1965, Stud. Math, V25, P217, DOI [10.4064/sm-25-2-217-225, DOI 10.4064/SM-25-2-217-225]
  • [4] DIFFERENTIABLE FUNCTIONS AND NICE OPERATORS
    Carlos Navarro-Pascual, Juan
    Angel Navarro, Miguel
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (01): : 96 - 107
  • [5] Fleming RJ., 2008, CHAPMAN HALL CRC MON, V138
  • [6] Gyory M., 2001, ACTA SCI MATH SZEGED, V67, P735
  • [7] 2-local isometries on function spaces
    Hatori, Osamu
    Oi, Shiho
    [J]. RECENT TRENDS IN OPERATOR THEORY AND APPLICATIONS, 2019, 737 : 89 - 106
  • [8] Hermitian Operators and Isometries on Banach Algebras of Continuous Maps with Values in Unital Commutative C*-Algebras
    Hatori, Osamu
    [J]. JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [9] Hatori O, 2018, ACTA SCI MATH, V84, P151, DOI 10.14232/actasm-017-558-6
  • [10] Compact homeomorphism groups are profinite
    Hofmann, Karl H.
    Morris, Sidney A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (09) : 2453 - 2462