Group actions on spheres with rank one prime power isotropy

被引:0
作者
Hambleton, Ian [1 ]
Yalcin, Ergun [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey
基金
加拿大自然科学与工程研究理事会;
关键词
ORBIT CATEGORY; FINITE-GROUPS; REPRESENTATIONS; COMPLEXES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a rank two finite group G admits a finite G-CW-complex X similar or equal to S-n with rank one prime power isotropy if and only if G does not p'-involve Qd(p) for any odd prime p. This follows from a more general theorem which allows us to construct a finite G-CW-complex by gluing together a given G-invariant family of representations defined on the Sylow subgroups of G.
引用
收藏
页码:379 / 400
页数:22
相关论文
共 24 条
[1]   Periodic complexes and group actions [J].
Adem, A ;
Smith, JH .
ANNALS OF MATHEMATICS, 2001, 154 (02) :407-435
[2]  
[Anonymous], 1966, Algebraic Topology
[3]  
Brown K., 1982, Cohomology of Groups
[4]   SOME EXOTIC DIHEDRAL ACTIONS ON SPHERES [J].
DAVIS, JF ;
DIECK, TT .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (02) :431-450
[5]   GROUP ACTIONS ON SPHERES WITH RANK ONE ISOTROPY [J].
Hambleton, Ian ;
Yalcin, Erguen .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (08) :5951-5977
[6]   HOMOTOPY REPRESENTATIONS OVER THE ORBIT CATEGORY [J].
Hambleton, Ian ;
Yalcin, Ergun .
HOMOLOGY HOMOTOPY AND APPLICATIONS, 2014, 16 (02) :345-369
[7]   Equivariant CW-complexes and the orbit category [J].
Hambleton, Ian ;
Pamuk, Semra ;
Yalcin, Ergun .
COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (02) :369-425
[8]   HOMOTOPY CLASSIFICATION OF SELF-MAPS OF BG VIA G-ACTIONS .1. [J].
JACKOWSKI, S ;
MCCLURE, J ;
OLIVER, B .
ANNALS OF MATHEMATICS, 1992, 135 (01) :183-226
[9]   Qd(p)-free rank two finite groups act freely on a homotopy product of two spheres [J].
Jackson, Michael A. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (03) :821-831
[10]   Constructing free actions of p-groups on products of spheres [J].
Klaus, Michele .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (05) :3065-3084