Steepest descent methods for multicriteria optimization

被引:446
|
作者
Fliege, J [1 ]
Svaiter, BF
机构
[1] Univ Dortmund, Fachbereich Math, D-44221 Dortmund, Germany
[2] Inst Matemat Pura & Aplicada, Jardim Bot, BR-22460320 Rio De Janeiro, Brazil
关键词
multicriteria optimization; multi-objective programming; vector optimization; Pareto points; steepest descent;
D O I
10.1007/s001860000043
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a steepest descent method for unconstrained multicriteria optimization and a "feasible descent direction" method for the constrained case. In the unconstrained case, the objective functions are assumed to be continuously differentiable. In the constrained case, objective and constraint functions are assumed to be Lipshitz-continuously differentiable and a constraint qualification is assumed. Under these conditions, it is shown that these methods converge to a point satisfying certain first-order necessary conditions for Pareto optimality. Both methods do not scalarize the original vector optimization problem. Neither ordering information nor weighting factors for the different objective functions are assumed to be known. In the single objective case, we retrieve the Steepest descent method and Zoutendijk's method of feasible directions, respectively.
引用
收藏
页码:479 / 494
页数:16
相关论文
共 50 条
  • [1] Steepest descent methods for multicriteria optimization
    Jörg Fliege
    Benar Fux Svaiter
    Mathematical Methods of Operations Research, 2000, 51 : 479 - 494
  • [2] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 88 - 107
  • [3] An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    G. C. Bento
    J. X. da Cruz Neto
    P. S. M. Santos
    Journal of Optimization Theory and Applications, 2013, 159 : 108 - 124
  • [4] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    G. C. Bento
    O. P. Ferreira
    P. R. Oliveira
    Journal of Optimization Theory and Applications, 2012, 154 : 88 - 107
  • [5] An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    Bento, G. C.
    da Cruz Neto, J. X.
    Santos, P. S. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (01) : 108 - 124
  • [6] On the convergence of steepest descent methods for multiobjective optimization
    Cocchi, G.
    Liuzzi, G.
    Lucidi, S.
    Sciandrone, M.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (01) : 1 - 27
  • [7] The self regulation problem as an inexact steepest descent method for multicriteria optimization
    Bento, G. C.
    Cruz Neto, J. X.
    Oliveira, P. R.
    Soubeyran, A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (03) : 494 - 502
  • [8] On the convergence of steepest descent methods for multiobjective optimization
    G. Cocchi
    G. Liuzzi
    S. Lucidi
    M. Sciandrone
    Computational Optimization and Applications, 2020, 77 : 1 - 27
  • [9] Steepest Descent Methods with Generalized Distances for Constrained Optimization
    Alfredo N. Iusem
    Acta Applicandae Mathematica, 1997, 46 : 225 - 246
  • [10] Steepest descent methods with generalized distances for constrained optimization
    Iusem, AN
    ACTA APPLICANDAE MATHEMATICAE, 1997, 46 (02) : 225 - 246