The Common Solution of Twelve Matrix Equations over the Quaternions

被引:1
作者
Yuan, Wei-Jie [1 ]
Wang, Qing-Wen [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Collaborat Innovat Ctr Marine Artificial Intellig, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
General solution; Least-squares solution; Least norm; Quaternion algebra; Real representation; Matrix equation; LEAST-SQUARES SOLUTIONS; GENERAL-SOLUTION; SYSTEM; AX; NORM;
D O I
10.2298/FIL2203887Y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a system of twelve quaternion matrix equations. Using the real representation of a quaternion matrix, we first derive the least-squares solution with the least norm to the system. Meanwhile, we establish the solvability conditions and an expression of the general solution to the system when it is consistent.
引用
收藏
页码:887 / 903
页数:17
相关论文
共 50 条
[31]   Convergence of an iterative method for solving Sylvester matrix equations over reflexive matrices [J].
Dehghan, Mehdi ;
Hajarian, Masoud .
JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (09) :1295-1298
[32]   Consistency and General Solutions to Some Sylvester-like Quaternion Matrix Equations [J].
He, Zhuo-Heng ;
Tian, Jie ;
Zhao, Yun-Fan ;
Yu, Shao-Wen .
SYMMETRY-BASEL, 2022, 14 (07)
[33]   The BiCG Algorithm for Solving the Minimal Frobenius Norm Solution of Generalized Sylvester Tensor Equation over the Quaternions [J].
Xie, Mengyan ;
Wang, Qing-Wen ;
Zhang, Yang .
SYMMETRY-BASEL, 2024, 16 (09)
[34]   A system of matrix equations over the commutative quaternion ring [J].
Xie, Lv-Ming ;
Wang, Qing-Wen .
FILOMAT, 2023, 37 (01) :97-106
[35]   A system of real quaternion matrix equations with applications [J].
Wang, Qing-Wen ;
van der Woude, J. W. ;
Chang, Hai-Xia .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (12) :2291-2303
[36]   ON SOLUTIONS OF QUATERNION MATRIX EQUATIONS XF - AX = BY AND XF - A(X)over-tilde = BY [J].
Song Caiqin ;
Chen Guoliang ;
Wang Xiaodong .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (05) :1967-1982
[37]   Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field [J].
Song, Guang-Jing ;
Wang, Qing-Wen ;
Chang, Hai-Xia .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (06) :1576-1589
[38]   Some novel results on a classical system of matrix equations over the dual quaternion algebra [J].
Xie, Lv-Ming ;
Wang, Qing-Wen .
FILOMAT, 2025, 39 (05) :1477-1490
[39]   Solution of a Class of Nonlinear Matrix Equations [J].
Pakhira, Samik ;
Bose, Snehasish ;
Hossein, Sk Monowar .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (02) :415-434
[40]   On the solution of parameterized Sylvester matrix equations [J].
Dehghani-Madiseh, Marzieh .
JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (04) :535-553