Variational ansatz-based quantum simulation of imaginary time evolution

被引:339
作者
McArdle, Sam [1 ]
Jones, Tyson [1 ]
Endo, Suguru [1 ]
Li, Ying [2 ]
Benjamin, Simon C. [1 ]
Yuan, Xiao [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] China Acad Engn Phys, Grad Sch, Beijing 100193, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
RENORMALIZATION-GROUP; SYSTEMS; PRINCIPLE; STATES;
D O I
10.1038/s41534-019-0187-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Imaginary time evolution is a powerful tool for studying quantum systems. While it is possible to simulate with a classical computer, the time and memory requirements generally scale exponentially with the system size. Conversely, quantum computers can efficiently simulate quantum systems, but not non-unitary imaginary time evolution. We propose a variational algorithm for simulating imaginary time evolution on a hybrid quantum computer. We use this algorithm to find the ground-state energy of many-particle systems; specifically molecular hydrogen and lithium hydride, finding the ground state with high probability. Our method can also be applied to general optimisation problems and quantum machine learning. As our algorithm is hybrid, suitable for error mitigation and can exploit shallow quantum circuits, it can be implemented with current quantum computers.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis [J].
Al-Saidi, W. A. ;
Zhang, Shiwei ;
Krakauer, Henry .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (22)
[3]  
Ashida Y., 2018, VARIATIONAL PRINCIPL
[4]   Quantropy [J].
Baez, John C. ;
Pollard, Blake S. .
ENTROPY, 2015, 17 (02) :772-789
[5]   ON THE EQUIVALENCE OF TIME-DEPENDENT VARIATIONAL-PRINCIPLES [J].
BROECKHOVE, J ;
LATHOUWERS, L ;
KESTELOOT, E ;
VANLEUVEN, P .
CHEMICAL PHYSICS LETTERS, 1988, 149 (5-6) :547-550
[6]   The Density Matrix Renormalization Group in Quantum Chemistry [J].
Chan, Garnet Kin-Lic ;
Sharma, Sandeep .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 :465-481
[7]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[8]  
Dallaire-Demers P.-L., 2018, LOW DEPTH CIRCUIT AN
[9]   Practical Quantum Error Mitigation for Near-Future Applications [J].
Endo, Suguru ;
Benjamin, Simon C. ;
Li, Ying .
PHYSICAL REVIEW X, 2018, 8 (03)
[10]  
Farhi E., 2014, QUANTUM APPROXIMATE