TIN OXIDE NANOCRYSTALS;
THIN-FILMS;
OPTICAL-PROPERTIES;
SB;
FLUORINE;
D O I:
10.1557/jmr.2015.387
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In the present work, we are investigating the electronic transport mechanism for antimony-doped tin oxide (ATO) ultrathin films produced by a colloidal deposition process (CDP) of nanocrystals synthesized via a solvothermal route in organic medium. The ATO ultrathin films were prepared from nanoparticles containing 9 mol% of Sb and the observed electrical resistivity at room temperature was 1.55, 1.10 x 10(-1), and 1.83 x 10(-3) Omega cm, respectively, for the 40, 45, and 71 nm films. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were carried out to investigate the films and electrical resistivity measurements taken in the four-probe mode with temperature ranging from -260 to 27 degrees C (13-300 K +/- 0.1 K). Results show a good data fitting on Mott's two-dimensional (2D) noninteracting variable range hopping for the 45 nm thin film, which is not further observed for the ATO ultrathin films obtained from CDP.
机构:
Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R ChinaChinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Xiao, Xiudi
Dong, Guoping
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R ChinaChinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Dong, Guoping
Shao, Jianda
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R ChinaChinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
Shao, Jianda
He, Hongbo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R ChinaChinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
He, Hongbo
Fan, Zhengxiu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R ChinaChinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China