Size Adaptation of Separable Dictionary Learning with Information-Theoretic Criteria

被引:0
作者
Baltoiu, Andra [1 ]
Dumitrescu, Bogdan [2 ]
机构
[1] Univ Bucharest, Res Inst Univ Bucharest ICUB, Bucharest 050107, Romania
[2] Univ Politehn Bucuresti, Dept Automat Control & Comp, Bucharest 060042, Romania
来源
2019 22ND INTERNATIONAL CONFERENCE ON CONTROL SYSTEMS AND COMPUTER SCIENCE (CSCS) | 2019年
关键词
dictionary learning; information theoretic criteria; Kronecker structure;
D O I
10.1109/CSCS.2019.00009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In sparse representation problems, the size of the dictionary is critical to the performance of the learning algorithm and, apart from loose guidelines concerning dictionary integrity, there is little indication on how to determine the optimal size. Information-theoretic criteria (ITC), used generally for model selection, have recently been employed for the task. This paper extends the work for the case of separable dictionaries, by modifying the Extended Renormalized Maximum Likelihood criterion to the 2D model and proposes an adaptation algorithm that almost entirely relies on the ITC score. Results in terms of mean size recovery rates are within 1 atom away from the true size, while representation errors are consistently below those obtained when applying dictionary learning with the known size.
引用
收藏
页码:7 / 11
页数:5
相关论文
共 15 条
  • [1] [Anonymous], 1973, P 2 INT S INF THEOR, DOI [10.1007/978-1-4612-1694-0, 10.1007/978-1-4612-0919-5_38]
  • [2] Dumitrescu B., 2019, ADAPTIVE SIZE UNPUB
  • [3] Dumitrescu B., 2018, DICT LEARNING ALGORI, DOI DOI 10.1007/978-3-319-78674-2
  • [4] 2D sparse signal recovery via 2D orthogonal matching pursuit
    Fang Yong
    Wu JiaJi
    Huang BorMin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (04) : 889 - 897
  • [5] Feng JZ, 2009, IEEE IMAGE PROC, P2149, DOI 10.1109/ICIP.2009.5414328
  • [6] Variable selection in linear regression: Several approaches based on normalized maximum likelihood
    Giurcaneanu, Ciprian Doru
    Razavi, Seyed Alireza
    Liski, Antti
    [J]. SIGNAL PROCESSING, 2011, 91 (08) : 1671 - 1692
  • [7] Separable Dictionary Learning
    Hawe, Simon
    Seibert, Matthias
    Kleinsteuber, Martin
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 438 - 445
  • [8] Irofti P., 2019, INT C AC SPEECH SIGN
  • [9] An Adaptive Approach to Learn Overcomplete Dictionaries With Efficient Numbers of Elements
    Marsousi, Mahdi
    Abhari, Kaveh
    Babyn, Paul
    Alirezaie, Javad
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (12) : 3272 - 3283
  • [10] Mazhar R, 2008, INT C PATT RECOG, P3535