Inference with normal-gamma prior distributions in regression problems

被引:284
作者
Griffin, Jim E. [1 ]
Brown, Philip J. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
来源
BAYESIAN ANALYSIS | 2010年 / 5卷 / 01期
关键词
Multiple regression; p > n; Normal-Gamma prior; Spike-and-slab" prior; Bayesian Lasso; Posterior moments; Shrinkage; Scale mixture of normals; Markov chain Monte Carlo; VARIABLE SELECTION; SCALE MIXTURES;
D O I
10.1214/10-BA507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the effects of placing an absolutely continuous prior distribution on the regression coefficients of a linear model. We show that the posterior expectation is a matrix-shrunken version of the least squares estimate where the shrinkage matrix depends on the derivatives of the prior predictive density of the least squares estimate. The special case of the normal-gamma prior, which generalizes the Bayesian Lasso (Park and Casella 2008), is studied in depth. We discuss the prior interpretation and the posterior effects of hyperparameter choice and suggest a data-dependent default prior. Simulations and a chemometric example are used to compare the performance of the normal-gamma and the Bayesian Lasso in terms of out-of-sample predictive performance.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 24 条
  • [1] ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
  • [2] [Anonymous], 1994, Models of Neural Networks III: Association, Generalization, and Representation
  • [3] Barndorff-Nielsen OE., 1981, Statistical distributions in scientific work, V4, P19
  • [4] Bibby BM, 2003, HANDBOOKS FINANCE, P211, DOI 10.1016/B978-044450896-6.50008-X
  • [5] OPTIMAL MINIMAL NEURAL INTERPRETATION OF SPECTRA
    BORGGAARD, C
    THODBERG, HH
    [J]. ANALYTICAL CHEMISTRY, 1992, 64 (05) : 545 - 551
  • [6] Brown P.J., 1993, Measurement, Regression, and Calibration
  • [7] Caron F., 2008, P 25 INT C MACH LEAR
  • [8] CHAMBERLAIN G, 1976, J ROY STAT SOC B MET, V38, P73
  • [9] DAWID AP, 1973, BIOMETRIKA, V60, P664
  • [10] Devroye L., 1986, NONUNIFORM RANDOM VA