Multidimensional digital holographic microscopy based on computational coherent superposition for coherent and incoherent light sensing

被引:1
作者
Tahara, Tatsuki [1 ,2 ]
Okamoto, Ryo [2 ,3 ]
Ishii, Ayumi [2 ,4 ]
Ito, Tomoyoshi [5 ]
Wakunami, Koki [1 ]
Ichihashi, Yasuyuki [1 ]
Oi, Ryutaro [1 ]
机构
[1] Natl Inst Informat & Commun Technol NICT, Appl Electromagnet Res Inst, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Kyoto Univ, Dept Elect Sci & Engn, Nishikyo Ku, Kyoto 6158510, Japan
[4] Toin Univ Yokohama, Grad Sch Engn, Aoba Ku, 1614 Kurogane Cho, Yokohama, Kanagawa 2258503, Japan
[5] Chiba Univ, Grad Sch Engn, Inage Ku, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
来源
HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS X | 2020年 / 11551卷
基金
日本学术振兴会;
关键词
Digital holography; Incoherent holography; Multidimensional holography; Color 3D imaging; Phase-shifting interferometry; Computational coherent superposition; Multiplexed imaging; Phase encoding; PHASE; FLUORESCENCE; RECONSTRUCTION;
D O I
10.1117/12.2573192
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase-shifting interferometry selectively extracting wavelength information, which is termed the computational coherent superposition (CCS) of multiple wavelengths, was first proposed in 2013. In this proceeding, phase-shifting interferometry and its application to digital holography are described. We apply CCS to self-interference incoherent color holography and construct single-path, mechanical-motion-free, wavelength-multiplexed, incoherent color digital holographic microscopy systems. Also, we numerically investigate quantum fluctuation in phase-shifting interferometry with the aim of recording weak light such as natural light and nonlinear light. After that, we briefly discuss the difference between color digital holography with single-shot CCS and color digital holography with single-shot phase-shifting interferometry and a Bayer color image sensor.
引用
收藏
页数:14
相关论文
共 70 条
  • [41] Three-dimensional holographic fluorescence microscopy
    Schilling, BW
    Poon, TC
    Indebetouw, G
    Storrie, B
    Shinoda, K
    Suzuki, Y
    Wu, MH
    [J]. OPTICS LETTERS, 1997, 22 (19) : 1506 - 1508
  • [42] Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing
    Shaked, Natan T.
    Mico, Vicente
    Trusiak, Maciej
    Kus, Arkadiusz
    Mirsky, Simcha K.
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2020, 12 (03) : 556 - 611
  • [43] Real-time digital holographic microscopy using the graphic processing unit
    Shimobaba, Tomoyoshi
    Sato, Yoshikuni
    Miura, Junya
    Takenouchi, Mai
    Ito, Tomoyoshi
    [J]. OPTICS EXPRESS, 2008, 16 (16): : 11776 - 11781
  • [44] CONOSCOPIC HOLOGRAPHY
    SIRAT, G
    PSALTIS, D
    [J]. OPTICS LETTERS, 1985, 10 (01) : 4 - 6
  • [45] Tahara T., 2013, P OPT PHOT JAP 2013
  • [46] Tahara T., Japanese patent, Patent No. 6308594
  • [47] Tahara T., APPL OPTICS
  • [48] Tahara T., 2014, DIGITAL HOLOGRAPHY 3
  • [49] Tahara T., 2020, Japanese patent application, Patent No. [2020-152433, 2020152433]
  • [50] Tahara T., J OPTICS-UK