Multidimensional digital holographic microscopy based on computational coherent superposition for coherent and incoherent light sensing

被引:1
作者
Tahara, Tatsuki [1 ,2 ]
Okamoto, Ryo [2 ,3 ]
Ishii, Ayumi [2 ,4 ]
Ito, Tomoyoshi [5 ]
Wakunami, Koki [1 ]
Ichihashi, Yasuyuki [1 ]
Oi, Ryutaro [1 ]
机构
[1] Natl Inst Informat & Commun Technol NICT, Appl Electromagnet Res Inst, 4-2-1 Nukuikitamachi, Koganei, Tokyo 1848795, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Kyoto Univ, Dept Elect Sci & Engn, Nishikyo Ku, Kyoto 6158510, Japan
[4] Toin Univ Yokohama, Grad Sch Engn, Aoba Ku, 1614 Kurogane Cho, Yokohama, Kanagawa 2258503, Japan
[5] Chiba Univ, Grad Sch Engn, Inage Ku, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
来源
HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS X | 2020年 / 11551卷
基金
日本学术振兴会;
关键词
Digital holography; Incoherent holography; Multidimensional holography; Color 3D imaging; Phase-shifting interferometry; Computational coherent superposition; Multiplexed imaging; Phase encoding; PHASE; FLUORESCENCE; RECONSTRUCTION;
D O I
10.1117/12.2573192
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase-shifting interferometry selectively extracting wavelength information, which is termed the computational coherent superposition (CCS) of multiple wavelengths, was first proposed in 2013. In this proceeding, phase-shifting interferometry and its application to digital holography are described. We apply CCS to self-interference incoherent color holography and construct single-path, mechanical-motion-free, wavelength-multiplexed, incoherent color digital holographic microscopy systems. Also, we numerically investigate quantum fluctuation in phase-shifting interferometry with the aim of recording weak light such as natural light and nonlinear light. After that, we briefly discuss the difference between color digital holography with single-shot CCS and color digital holography with single-shot phase-shifting interferometry and a Bayer color image sensor.
引用
收藏
页数:14
相关论文
共 70 条
  • [1] Simultaneous two-wavelength Doppler phase-shifting digital holography
    Barada, Daisuke
    Kiire, Tomohiro
    Sugisaka, Jun-ichiro
    Kawata, Shigeo
    Yatagai, Toyohiko
    [J]. APPLIED OPTICS, 2011, 50 (34) : H237 - H244
  • [2] 4D compressive sensing holographic microscopy imaging of small moving objects
    Brodoline, Alexey
    Rawat, Nitin
    Alexandre, Daniel
    Cubedo, Nicolas
    Gross, Michel
    [J]. OPTICS LETTERS, 2019, 44 (11) : 2827 - 2830
  • [3] Compact self-interference incoherent digital holographic camera system with real-time operation
    Choi, KiHong
    Joo, Kyung-Il
    Lee, Tae-Hyun
    Kim, Hak-Rin
    Yim, Junkyu
    Do, Hyeongkyu
    Min, Sung-Wook
    [J]. OPTICS EXPRESS, 2019, 27 (04) : 4818 - 4833
  • [4] Single-pixel digital ghost holography
    Clemente, Pere
    Duran, Vicente
    Tajahuerce, Enrique
    Torres-Company, Victor
    Lancis, Jesus
    [J]. PHYSICAL REVIEW A, 2012, 86 (04):
  • [5] 2-WAVELENGTH LASER INTERFEROMETRY USING SUPERHETERODYNE DETECTION
    DANDLIKER, R
    THALMANN, R
    PRONGUE, D
    [J]. OPTICS LETTERS, 1988, 13 (05) : 339 - 341
  • [6] Endo Y, 2019, P OPT PHOT JAP 2019
  • [7] A NEW MICROSCOPIC PRINCIPLE
    GABOR, D
    [J]. NATURE, 1948, 161 (4098) : 777 - 778
  • [8] DIGITAL IMAGE FORMATION FROM ELECTRONICALLY DETECTED HOLOGRAMS
    GOODMAN, JW
    LAWRENCE, RW
    [J]. APPLIED PHYSICS LETTERS, 1967, 11 (03) : 77 - +
  • [9] Multiwavelength-multiplexed phase-shifting incoherent color digital holography
    Hara, Takayuki
    Tahara, Tatsuki
    Ichihashi, Yasuyuki
    Oi, Ryutaro
    Ito, Tomoyoshi
    [J]. OPTICS EXPRESS, 2020, 28 (07) : 10078 - 10089
  • [10] Radiometric temperature measurement by incoherent digital holography
    Imbe, Masatoshi
    [J]. APPLIED OPTICS, 2019, 58 (05) : A82 - A89