Periodically forced Pielou's equation

被引:20
作者
Camouzis, E.
Ladas, G. [1 ]
机构
[1] Univ Rhode Isl, Dept Math, Kingston, RI 02881 USA
[2] Amer Coll Greece, Dept Math & Nat Sci, Athens 15342, Greece
关键词
boundedness; convergence to periodic solution; difference equation; periodically forced equation; Pielou's equation;
D O I
10.1016/j.jmaa.2006.10.096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the global character of solutions of the periodically forced Pielou's equation xn+1 = beta(n)x(n)/1+x(n-1), n = 0,1,..., and prove that when the sequence {beta(n)} is periodic with prime period k, with positive values, and Pi(k-1)(i=0)beta(i) > 1, every positive solution converges to a periodic solution with prime period k. (c) 2007 Published by Elsevier Inc.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 13 条
[1]  
[Anonymous], 1993, GLOBAL ASYMPTOTIC BE
[2]   When does periodicity destroy boundedness in rational equations? [J].
Camouzis, E. ;
Ladas, G. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (09) :961-979
[3]   PERIODIC-SOLUTIONS TO NONAUTONOMOUS DIFFERENCE-EQUATIONS [J].
CLARK, ME ;
GROSS, LJ .
MATHEMATICAL BIOSCIENCES, 1990, 102 (01) :105-119
[4]   A periodically forced Beverton-Holt equation [J].
Cushing, JM ;
Henson, SM .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (12) :1119-1120
[5]  
CUSHING JM, 1998, J DIFFER EQU APPL, V3, P547, DOI DOI 10.1080/10236199708808120
[6]  
ELAYDI S, 2003, IN PRESS P 8 INT C D
[7]  
ELAYDI SN, IN PRESS J DIFFERENC
[8]  
KOCIC VL, IN PRESS J DIFFERENC
[9]  
KULENOVIC M. R. S., 2001, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures
[10]  
KULENOVIC MRS, IN PRESS CONVERGENCE