Some Distance Antimagic Labeled Graphs

被引:0
作者
Handa, Adarsh K. [1 ]
Godinho, Aloysius [1 ]
Singh, Tarkeshwar [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, K K Birla Goa Campus, Pilani, Goa, India
来源
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016 | 2016年 / 9602卷
关键词
Distance antimagic graphs; Antimagic labeling;
D O I
10.1007/978-3-319-29221-2_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G be a graph of order n. A bijection f : V (G) ->{1, 2,..., n} is said to be distance antimagic if for every vertex v the vertex weight defined by w(f) (v) = Sigma(x is an element of N(v)) f(x) is distinct. The graph which admits such a labeling is called a distance antimagic graph. For a positive integer k, define f(k) : V (G) -> {1+ k, 2+ k,..., n+ k} by f(k)(x) = f(x) + k. If w(fk) (u) not equal w(fk) (v) for every pair of vertices u, v is an element of V, for any k >= 0 then f is said to be an arbitrarily distance antimagic labeling and the graph which admits such a labeling is said to be an arbitrarily distance antimagic graph. In this paper, we provide arbitrarily distance antimagic labelings for rP(n), generalised Petersen graph P(n, k), n >= 5, Harary graph H-4,H- n for n not equal 6 and also prove that join of these graphs is distance antimagic.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 8 条
[1]  
Arumugam S, 2011, J INDONES MATH SOC, P11
[2]  
Gallian J. A., 2014, ELECTRON J COMB, V16, P1
[3]  
Handa A.K., DISTANCE ANTIMAGIC L
[4]  
Kamatchi N., 2013, J COMBIN MATH COMBIN, V84, P61
[5]  
Kamatchi N., 2012, THESIS KALASALINGAM
[6]  
Rosa A., 1967, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, P349
[7]  
Vilfred V., 1994, THESIS U KERALA TRIV
[8]  
West D. B., 2006, INTRO GRAPH THEORY