Some Distance Antimagic Labeled Graphs

被引:0
|
作者
Handa, Adarsh K. [1 ]
Godinho, Aloysius [1 ]
Singh, Tarkeshwar [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, K K Birla Goa Campus, Pilani, Goa, India
来源
ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016 | 2016年 / 9602卷
关键词
Distance antimagic graphs; Antimagic labeling;
D O I
10.1007/978-3-319-29221-2_16
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let G be a graph of order n. A bijection f : V (G) ->{1, 2,..., n} is said to be distance antimagic if for every vertex v the vertex weight defined by w(f) (v) = Sigma(x is an element of N(v)) f(x) is distinct. The graph which admits such a labeling is called a distance antimagic graph. For a positive integer k, define f(k) : V (G) -> {1+ k, 2+ k,..., n+ k} by f(k)(x) = f(x) + k. If w(fk) (u) not equal w(fk) (v) for every pair of vertices u, v is an element of V, for any k >= 0 then f is said to be an arbitrarily distance antimagic labeling and the graph which admits such a labeling is said to be an arbitrarily distance antimagic graph. In this paper, we provide arbitrarily distance antimagic labelings for rP(n), generalised Petersen graph P(n, k), n >= 5, Harary graph H-4,H- n for n not equal 6 and also prove that join of these graphs is distance antimagic.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 45 条
  • [1] Distance antimagic labeling of circulant graphs
    Sy, Syafrizal
    Simanjuntak, Rinovia
    Nadeak, Tamaro
    Sugeng, Kiki Ariyanti
    Tulus, Tulus
    AIMS MATHEMATICS, 2024, 9 (08): : 21177 - 21188
  • [2] Antimagic Labeling of Some Biregular Bipartite Graphs
    Deng, Kecai
    Li, Yunfei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (04) : 1205 - 1218
  • [3] Local distance antimagic chromatic number for the union of complete bipartite graphs
    Priyadharshini, V.
    Nalliah, M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (04): : 281 - 291
  • [4] Antimagic orientation of Halin graphs
    Yu, Xiaowei
    Chang, Yulin
    Zhou, Shan
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3160 - 3165
  • [5] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [6] Antimagic Labelings of Join Graphs
    Bača M.
    Phanalasy O.
    Ryan J.
    Semaničová-Feňovčíková A.
    Mathematics in Computer Science, 2015, 9 (2) : 139 - 143
  • [7] Antimagic Labeling of Cubic Graphs
    Liang, Yu-Chang
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2014, 75 (01) : 31 - 36
  • [8] Antimagic labeling for subdivisions of graphs
    Li, Wei-Tian
    DISCRETE APPLIED MATHEMATICS, 2025, 363 : 215 - 223
  • [9] Antimagic labeling and canonical decomposition of graphs
    Barrus, Michael D.
    INFORMATION PROCESSING LETTERS, 2010, 110 (07) : 261 - 263
  • [10] Antimagic labeling of biregular bipartite graphs
    Yu, Xiaowei
    DISCRETE APPLIED MATHEMATICS, 2023, 327 : 47 - 59