Automatic Image Annotation with Cooperation of Concept-Specific and Universal Visual Vocabularies

被引:0
|
作者
Wang, Yanjie [1 ]
Liu, Xiabi [1 ]
Jia, Yunde [1 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
来源
ADVANCES IN MULTIMEDIA MODELING, PROCEEDINGS | 2010年 / 5916卷
关键词
Image annotation; Image retrieval; Visual vocabulary; Bag-of-features; Max-Min posterior Pseudo-probabilities (MMP); RETRIEVAL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an automatic image annotation method based on concept-specific image representation and discriminative learning. Firstly, the concept-specific visual vocabularies are generated by assuming that localized features from the images with a specific concept are of the distribution of Gaussian Mixture Model (GMM). Each component in the GMM is taken as a visual token of the concept. The visual tokens of all the concepts are clustered to obtain a universal token set. Secondly, the image is represented as a concept-specific feature vector by computing the average posterior probabilities of being each universal visual token for all the localized features and assigning it to corresponding concept-specific visual tokens. Thus the feature vector for an image varies with different concepts. Finally, we implement image annotation and retrieval under a discriminative learning framework of Bayesian classifiers, Max-Min posterior Pseudo-probabilities (MM P). The proposed method were evaluated on the popular Corel-5K database. The experimental results with comparisons to state-of-the-art show that our method is promising.
引用
收藏
页码:262 / 272
页数:11
相关论文
共 11 条
  • [1] Concept-Specific Visual Vocabulary Construction for Object Categorization
    Zhang, Chunjie
    Liu, Jing
    Ouyang, Yi
    Lu, Hanqing
    Ma, Songde
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2009, 2009, 5879 : 936 - 942
  • [2] VISUAL WORD PAIRS FOR AUTOMATIC IMAGE ANNOTATION
    Herve, Nicolas
    Boujemaa, Nozha
    ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 430 - 433
  • [3] Automatic annotation of image databases based on implicit crowdsourcing, visual concept modeling and evolution
    Ntalianis, Klimis
    Tsapatsoulis, Nicolas
    Doulamis, Anastasios
    Matsatsinis, Nikolaos
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 69 (02) : 397 - 421
  • [4] Automatic image annotation using affective vocabularies: Attribute-based learning approach
    Jeong, Jin-Woo
    Lee, Dong-Ho
    JOURNAL OF INFORMATION SCIENCE, 2014, 40 (04) : 426 - 445
  • [5] Automatic Image Annotation Exploiting Textual and Visual Saliency
    Gu, Yun
    Xue, Haoyang
    Yang, Jie
    Jia, Zhenhong
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 95 - 102
  • [6] Automatic image annotation using visual content and folksonomies
    Lindstaedt, Stefanie
    Moerzinger, Roland
    Sorschag, Robert
    Pammer, Viktoria
    Thallinger, Georg
    MULTIMEDIA TOOLS AND APPLICATIONS, 2009, 42 (01) : 97 - 113
  • [7] Automatic image annotation using visual content and folksonomies
    Stefanie Lindstaedt
    Roland Mörzinger
    Robert Sorschag
    Viktoria Pammer
    Georg Thallinger
    Multimedia Tools and Applications, 2009, 42 : 97 - 113
  • [8] Bayesian Framework for Automatic Image Annotation Using Visual Keywords
    Agrawal, Rajeev
    Wu, Changhua
    Grosky, William
    Fotouhi, Farshad
    UBIQUITOUS COMPUTING AND MULTIMEDIA APPLICATIONS, 2010, 75 : 142 - +
  • [9] EFFECTIVE IMAGE SEMANTIC ANNOTATION BY DISCOVERING VISUAL-CONCEPT ASSOCIATIONS FROM IMAGE-CONCEPT DISTRIBUTION MODEL
    Su, Ja-Hwung
    Chou, Chien-Li
    Lin, Ching-Yung
    Tseng, Vincent S.
    2010 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME 2010), 2010, : 42 - 47
  • [10] Automatic textile image annotation by predicting emotional concepts from visual features
    Shin, Yunhee
    Kim, Youngrae
    Kim, Eun Yi
    IMAGE AND VISION COMPUTING, 2010, 28 (03) : 526 - 537