Is Dirichlet the physical boundary condition for the one-dimensional hydrogen atom?

被引:9
作者
de Oliveira, Cesar R. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil
关键词
Hydrogen atom; Self-adjoint extensions; Dirichlet boundary condition; Dimensional reduction; KLEIN-GORDON EQUATION; SINGULAR POTENTIALS; SPACE; PENETRABILITY; IONIZATION; INSULATORS; SYSTEMS;
D O I
10.1016/j.physleta.2010.04.074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is argued that Dirichlet is the physical boundary condition at the origin for the one-dimensional hydrogen atom: The three-dimensional hydrogen atom is confined to a tube, and the limit as the diameter of the tube cross section goes to zero is taken. It is shown that the energy expectations are finite only in case of Dirichlet boundary condition. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2805 / 2808
页数:4
相关论文
共 47 条
[1]   SINGULAR POTENTIALS IN ONE DIMENSION [J].
ANDREWS, M .
AMERICAN JOURNAL OF PHYSICS, 1976, 44 (11) :1064-1066
[2]   GROUND STATE OF ONE-DIMENSIONAL HYDROGEN ATOM [J].
ANDREWS, M .
AMERICAN JOURNAL OF PHYSICS, 1966, 34 (12) :1194-&
[3]   On the 1D Coulomb Klein-Gordon equation [J].
Barton, G. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) :1011-1031
[4]   On the curvature and torsion effects in one dimensional waveguides [J].
Bouchitte, Guy ;
Mascarenhas, M. Luisa ;
Trabucho, Luis .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (04) :793-808
[5]  
BOYA LJ, 1988, PHYS REV A, V37, P3567, DOI 10.1103/PhysRevA.37.3567
[6]  
Braides A., 2002, Gamma-Convergence for Beginners
[7]   ONE DIMENSIONAL HYDROGEN-ATOM WITH A REPULSIVE CORE [J].
CARE, CM .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (14) :1799-&
[8]   Properties of image-potential-induced surface states of insulators [J].
Cole, Milton W. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (10) :4239-4252
[9]   IMAGE-POTENTIAL-INDUCED SURFACE BANDS IN INSULATORS [J].
COLE, MW ;
COHEN, MH .
PHYSICAL REVIEW LETTERS, 1969, 23 (21) :1238-&
[10]   Critical dipoles in one, two, and three dimensions [J].
Connolly, Kevin ;
Griffiths, David J. .
AMERICAN JOURNAL OF PHYSICS, 2007, 75 (06) :524-531