Cobalt-Containing Nitrogen-Doped Carbon Materials Derived from Saccharides as Efficient Electrocatalysts for Oxygen Reduction Reaction

被引:7
作者
Veske, Kaidi [1 ]
Sarapuu, Ave [1 ]
Kaarik, Maike [1 ]
Kikas, Arvo [2 ]
Kisand, Vambola [2 ]
Piirsoo, Helle-Mai [2 ]
Treshchalov, Alexey [2 ]
Leis, Jaan [1 ]
Tamm, Aile [2 ]
Tammeveski, Kaido [1 ]
机构
[1] Univ Tartu, Inst Chem, Ravila 14a, EE-50411 Tartu, Estonia
[2] Univ Tartu, Inst Phys, W Ostwald Str 1, EE-50411 Tartu, Estonia
关键词
electrocatalysis; oxygen reduction reaction; non-precious metal catalyst; MNC catalyst; carbon nitride template; TRANSITION-METAL; ACTIVE-SITES; CATHODE CATALYSTS; FUEL-CELLS; IRON; NANOTUBES; GRAPHENE; NANOSHEETS; INSIGHTS;
D O I
10.3390/catal12050568
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of non-precious metal electrocatalysts towards oxygen reduction reaction (ORR) is crucial for the commercialisation of polymer electrolyte fuel cells. In this work, cobalt-containing nitrogen-doped porous carbon materials were prepared by a pyrolysis of mixtures of saccharides, cobalt nitrate and dicyandiamide, which acts as a precursor for reactive carbon nitride template and a nitrogen source. The rotating disk electrode (RDE) experiments in 0.1 M KOH solution showed that the glucose-derived material with optimised cobalt content had excellent ORR activity, which was comparable to that of 20 wt% Pt/C catalyst. In addition, the catalyst exhibited high tolerance to methanol, good stability in short-time potential cycling test and low peroxide yield. The materials derived from xylan, xylose and cyclodextrin displayed similar activities, indicating that various saccharides can be used as inexpensive and sustainable precursors to synthesise active catalyst materials for anion exchange membrane fuel cells.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal-Nitrogen-Carbon Electrocatalysts [J].
Artyushkova, Kateryna ;
Serov, Alexey ;
Rojas-Carbonell, Santiago ;
Atanassov, Plamen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (46) :25917-25928
[2]   Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells [J].
Asset, Tristan ;
Atanassov, Plamen .
JOULE, 2020, 4 (01) :33-44
[3]  
Bard A.J., 2001, Double-Layer Structure And Adsorption, VSecond
[4]   Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy [J].
Bertoti, Imre ;
Mohai, Miklos ;
Laszlo, Krisztina .
CARBON, 2015, 84 :185-196
[5]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[6]   SOLUBILITY AND DIFFUSION COEFFICIENT OF OXYGEN IN POTASSIUM HYDROXIDE SOLUTIONS [J].
DAVIS, RE ;
HORVATH, GL ;
TOBIAS, CW .
ELECTROCHIMICA ACTA, 1967, 12 (03) :287-&
[7]   Review of cell performance in anion exchange membrane fuel cells [J].
Dekel, Dario R. .
JOURNAL OF POWER SOURCES, 2018, 375 :158-169
[8]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[9]   g-C3N4 templated synthesis of the Fe3C@NSC electrocatalyst enriched with Fe-Nx active sites for efficient oxygen reduction reaction [J].
Eissa, Ahmed A. ;
Peera, Shaik Gouse ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) :16920-16936
[10]   Nanostructured mesoporous carbons: Tuning texture and surface chemistry [J].
Enterria, M. ;
Figueiredo, J. L. .
CARBON, 2016, 108 :79-102