Asymptotic stability of stationary solutions to the compressible bipolar Navier-Stokes-Poisson equations

被引:6
作者
Cai, Hong [1 ]
Tan, Zhong [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
bipolar Navier-Stokes-Poisson equations; stationary solutions; asymptotic stability; GLOBAL WELL-POSEDNESS; SYSTEM; DECAY; FORCE;
D O I
10.1002/mma.4320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the compressible bipolar Navier-Stokes-Poisson equations with a non-flat doping profile in three-dimensional space. The existence and uniqueness of the non-constant stationary solutions are established when the doping profile is a small perturbation of a positive constant state. Then under the smallness assumption of the initial perturbation, we show the global existence of smooth solutions to the Cauchy problem near the stationary state. Finally, the convergence rates are obtained by combining the energy estimates for the nonlinear system and the L-2-decay estimates for the linearized equations. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:4493 / 4513
页数:21
相关论文
共 23 条
[1]  
Degond P., 2000, AMS/IP Stud. Adv. Math., V266, P77
[2]   Optimal Lp-Lq convergence rates for the compressible Navier-Stokes equations with potential force [J].
Duan, Renjun ;
Liu, Hongxia ;
Ukai, Seiji ;
Yang, Tong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) :220-233
[3]   STABILITY OF RAREFACTION WAVE AND BOUNDARY LAYER FOR OUTFLOW PROBLEM ON THE TWO-FLUID NAVIER-STOKES-POISSON EQUATIONS [J].
Duan, Renjun ;
Yang, Xiongfeng .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) :985-1014
[4]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392
[5]  
Ghosh S, 2002, PHYS PLASMAS, V9
[6]   Global existence for compressible Navier-Stokes-Poisson equations in three and higher dimensions [J].
Hao, Chengchun ;
Li, Hai-Liang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) :4791-4812
[7]  
J?ngel A., 2001, QUASI HYDRODYNAMIC S
[8]  
Kobayashi T., 2008, Adv. Math. Sci. Appl, V18, P141
[9]  
Kundu SK., 2011, BULG J PHYS, V38, P409
[10]  
Li HL, 2010, ARCH RATION MECH AN, V196, P681, DOI 10.1007/s00205-009-0255-4