Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy

被引:80
作者
Luna-Tortos, Carlos [1 ,2 ]
Fedrowitz, Maren [1 ]
Loescher, Wolfgang [1 ,2 ]
机构
[1] Univ Vet Med, Dept Pharmacol Toxicol & Pharm, D-30559 Hannover, Germany
[2] Ctr Syst Neurosci, Hannover, Germany
关键词
Multidrug transporters; Blood-brain barrier; Epilepsy; Pharmacoresistance; BLOOD-BRAIN-BARRIER; ORGANIC ANION TRANSPORTER; P-GLYCOPROTEIN FUNCTION; IN-VITRO; VALPROIC ACID; EFFLUX TRANSPORTERS; FUNCTIONAL-ACTIVITY; ENDOTHELIAL-CELLS; SPECIES-DIFFERENCES; ABC TRANSPORTERS;
D O I
10.1016/j.neuropharm.2010.01.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Resistance to antiepileptic drugs (AEDs) is one of the most serious problems in the treatment of epilepsy. Accumulating experimental evidence suggests that increased expression of the drug efflux transporter P-glycoprotein (Pgp) at the blood brain barrier may be involved in the mechanisms leading to AED resistance. In addition to Pgp, increased expression of several multidrug resistance-associated proteins (MRPs) has been determined in epileptogenic brain regions of patients with pharmacoresistant epilepsy. However, it is not known whether AEDs are substrates for MRPs. In the present experiments, we evaluated whether common AEDs are transported by human MRPs (MRP1, 2 and 5) that are overexpressed in AED resistant epilepsy. For this purpose, we used a highly sensitive assay (concentration equilibrium transport assay; CETA) in polarized kidney cell lines (LLC, MDCKII) transfected with human MRPs. The assay was validated by known MRP substrates, including calcein-AM (MRP1), vinblastine (MRP2) and chloromethylfluorescein diacetate (CMFDA; MRP5). The directional transport determined with these drugs in MRP-transfected cell lines could be blocked with the MRP inhibitor MK571. However, in contrast to transport of known MRP substrates, none of the common AEDs (carbamazepine, valproate, levetiracetam, phenytoin, lamotrigine and phenobarbital) used in this study was transported by MRP1. MRP2 or MRP5. A basolateral-to-apical transport of valproate, which could be inhibited by MK571 and probenecid, was determined in LLC cells (both wildtype and transfected), but the specific transporter involved was not identified. The data indicate that common AEDs are not substrates for human MRP1. MRP2 or MRP5, at least in the in vitro models used in this study. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1019 / 1032
页数:14
相关论文
共 75 条
[1]   Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain [J].
Aronica, E ;
Gorter, JA ;
Redeker, S ;
van Vliet, EA ;
Ramkema, M ;
Scheffer, GL ;
Scheper, RJ ;
van der Valk, P ;
Leenstra, S ;
Baayen, JC ;
Spliet, WGM ;
Troost, D .
EPILEPSIA, 2005, 46 (06) :849-857
[2]   Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy [J].
Aronica, E ;
Gorter, JA ;
Ramkema, M ;
Redeker, S ;
Özbas-Gerçeker, F ;
van Vliet, EA ;
Scheffer, GL ;
Scheper, RJ ;
van der Valk, P ;
Baayen, JC ;
Troost, D .
EPILEPSIA, 2004, 45 (05) :441-451
[3]   Comparison of drug efflux transport kinetics in various blood-brain barrier models [J].
Bachmeier, Corbin J. ;
Trickler, William J. ;
Miller, Donald W. .
DRUG METABOLISM AND DISPOSITION, 2006, 34 (06) :998-1003
[4]   Differences in the transport of the antiepileptic drugs phenytoin, levetiracetarn and carbamazepine by human and mouse P-glycoprotein [J].
Baltes, Steffen ;
Gastens, Alexandra M. ;
Fedrowitz, Maren ;
Potschka, Heidrun ;
Kaever, Volkhard ;
Loescher, Wolfgang .
NEUROPHARMACOLOGY, 2007, 52 (02) :333-346
[5]   Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays [J].
Baltes, Steffen ;
Fedrowitz, Maren ;
Tortos, Carlos Luna ;
Potschka, Heidrun ;
Loescher, Wolfgang .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2007, 320 (01) :331-343
[6]   Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET [J].
Bankstahl, Jens P. ;
Kuntner, Claudia ;
Abrahim, Aiman ;
Karch, Rudolf ;
Stanek, Johann ;
Wanek, Thomas ;
Wadsak, Wolfgang ;
Kletter, Kurt ;
Mueller, Markus ;
Loescher, Wolfgang ;
Langer, Oliver .
JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (08) :1328-1335
[7]   Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA [J].
Bartels, A. L. ;
Willemsen, A. T. M. ;
Kortekaas, R. ;
de Jong, B. M. ;
de Vries, R. ;
de Klerk, O. ;
van Oostrom, J. C. H. ;
Portman, A. ;
Leenders, K. L. .
JOURNAL OF NEURAL TRANSMISSION, 2008, 115 (07) :1001-1009
[8]   Mammalian ABC transporters in health and disease [J].
Borst, P ;
Elferink, RO .
ANNUAL REVIEW OF BIOCHEMISTRY, 2002, 71 :537-592
[9]   Multidrug resistance-associated proteins 3, 4, and 5 [J].
Borst, Piet ;
de Wolf, Cornelia ;
de Wetering, Koen van .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2007, 453 (05) :661-673
[10]   Multidrug resistance-associated proteins: Expression and function in the central nervous system [J].
Dallas, Shannon ;
Miller, David S. ;
Bendayan, Reina .
PHARMACOLOGICAL REVIEWS, 2006, 58 (02) :140-161