Modular forms, generalized Dedekind symbols and period polynomials

被引:22
作者
Fukuhara, S
机构
[1] Tsuda Coll, Dept Math, Kodaira, Tokyo 187, Japan
[2] Univ Melbourne, Parkville, Vic 3052, Australia
关键词
D O I
10.1007/s002080050138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:83 / 101
页数:19
相关论文
共 26 条
[1]  
[Anonymous], 1976, INTRO MODULAR FORMS
[2]   GENERALIZED DEDEKIND SUMS AND TRANSFORMATION FORMULAE OF CERTAIN LAMBERT SERIES [J].
APOSTOL, TM .
DUKE MATHEMATICAL JOURNAL, 1950, 17 (02) :147-157
[3]  
APOSTOL TM, 1976, GRAD TEXTS MATH, V0041
[4]   THE LOGARITHM OF THE DEDEKIND ETA-FUNCTION [J].
ATIYAH, M .
MATHEMATISCHE ANNALEN, 1987, 278 (1-4) :335-380
[5]  
BOYER S, 1990, J REINE ANGEW MATH, V405, P181
[6]   VARIETIES OF GROUP-REPRESENTATIONS AND CASSONS INVARIANT FOR RATIONAL HOMOLOGY 3-SPHERES [J].
BOYER, S ;
NICAS, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (02) :507-522
[7]  
Eichler M., 1957, MATH Z, V67, P267
[8]   CASSON INVARIANT OF SEIFERT HOMOLOGY 3-SPHERES [J].
FUKUHARA, S ;
MATSUMOTO, Y ;
SAKAMOTO, K .
MATHEMATISCHE ANNALEN, 1990, 287 (02) :275-285
[9]  
FUKUHARA S, 1995, AXIOMATIC APPROACH G
[10]  
Hirzebruch F., 1971, Prospects in Math., Annals of Math. Studies, V70, P3