Parameter-dependent associative Yang-Baxter equations and Poisson brackets

被引:8
作者
Odesskii, Alexander [1 ]
Rubtsov, Vladimir [2 ,3 ]
Sokolov, Vladimir [4 ]
机构
[1] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
[2] Univ Angers, Dept Math, LAREMA, CNRS UMR 6093, F-49045 Angers 01, France
[3] Inst Theoret & Expt Phys, Moscow 117259, Russia
[4] Landau Inst Theoret Phys, Moscow, Russia
关键词
Poisson brackets; double Poisson structures; Yang-Baxter equations; ALGEBRAS;
D O I
10.1142/S0219887814600366
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss associative analogues of classical Yang-Baxter equation (CYBE) meromorphically dependent on parameters. We discover that such equations enter in a description of a general class of parameter-dependent Poisson structures and double Lie and Poisson structures in sense of Van den Bergh. We propose a classification of all solutions for onedimensional associative Yang-Baxter equations (AYBE).
引用
收藏
页数:18
相关论文
共 18 条
[1]   On the associative analog of Lie bialgebras [J].
Aguiar, M .
JOURNAL OF ALGEBRA, 2001, 244 (02) :492-532
[2]  
BELAVIN AA, 1982, FUNCT ANAL APPL+, V16, P159
[3]  
Burban I, 2012, MEM AM MATH SOC, V220, P1
[4]   Poisson structures on moduli spaces of representations [J].
Crawley-Boevey, William .
JOURNAL OF ALGEBRA, 2011, 325 (01) :205-215
[5]  
Fomin S., 1999, Advances in geometry
[6]  
Prog. in Mathematics book series, V172, P147
[7]  
Kontsevich Maxim, 1993, GELFAND MATH SEMINAR, P173
[8]   Integrable ODEs on associative algebras [J].
Mikhailov, AV ;
Sokolov, VV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :231-251
[9]   Bi-Hamiltonian ordinary differential equations with matrix variables [J].
Odesskii, A. V. ;
Rubtsov, V. N. ;
Sokolov, V. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (01) :442-447
[10]   Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations [J].
Odesskii, Alexander ;
Sokolov, Vladimir .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) :83-99