Much of existing work in information extraction assumes the static nature of relationships in fixed knowledge bases. However, in collaborative environments such as Wikipedia, information and structures are highly dynamic over time. In this work, we introduce a new method to extract complex event structures from Wikipedia. We propose a new model to represent events by engaging multiple entities, generalizable to an arbitrary language. The evolution of an event is captured effectively based on analyzing the user edits history in Wikipedia. Our work provides a foundation for a novel class of evolution-aware entity-based enrichment algorithms, and considerably increases the quality of entity accessibility and temporal retrieval for Wikipedia. We formalize this problem and introduce an efficient end-to-end platform as a solution. We conduct comprehensive experiments on a real dataset of 1.8 million Wikipedia articles to show the effectiveness of our proposed solution. Our results demonstrate that we are able to achieve a precision of 70% when evaluated using manually annotated data. Finally, we make a comparative analysis of our work with the well established Current Event Portal of Wikipedia and find that our system WikipEvent using Co-References method can be used in a complementary way to deliver new and more information about events.