Complete Forms of Mie-Gruneisen Equation of State

被引:8
作者
Heuze, Olivier [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
来源
SHOCK COMPRESSION OF CONDENSED MATTER - 2015 | 2017年 / 1793卷
关键词
D O I
10.1063/1.4971535
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Mie-Gruneisen Equation of State (EoS) is often used in hydrocode simulations to model condensed materials at high pressure, but it is defined in an incomplete form P(V,E) which does not allow access to temperature and entropy. We have extended it to a complete form S(V, E) which is the combination of three independent models : an isentropic or isotherm potential E-K(V), the Debye temperature theta(V) from which we derive the Gruneisen coefficient Gamma(V), and a new function psi(u) which gives the specific heat by derivation. Then, we access to all the thermodynamic properties. We use form to build EoS with phase transitions.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
Al'tshuler L. V., 1987, ZH PRIKLADNOI MEKHIN, V1, P134
[2]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[3]  
Debye P, 1912, ANN PHYS-BERLIN, V39, P789
[4]   THE THERMAL EXPANSION OF SOLIDS [J].
DUGDALE, JS ;
MACDONALD, DKC .
PHYSICAL REVIEW, 1953, 89 (04) :832-834
[5]   The Planck theory of radiation and the theory of specific heat [J].
Einstein, A .
ANNALEN DER PHYSIK, 1906, 22 (01) :180-190
[6]  
Gruneisen E, 1912, ANN PHYS-BERLIN, V39, P257
[7]  
Hebert D, 2009, AIP CONF PROC, V1195, P1205
[8]  
Heuzé O, 2002, AIP CONF PROC, V620, P450, DOI 10.1063/1.1483575
[9]  
Heuze O., UNPUB
[10]  
Heuze O., 2000, 27 INT PYR SEM, P15