Analyzing the Approximation Error of the Fast Graph Fourier Transform

被引:0
作者
Le Magoarou, Luc [1 ]
Tremblay, Nicolas [2 ]
Gribonval, Remi [3 ]
机构
[1] B Com, Rennes, France
[2] Univ Grenoble Alpes, CNRS, GIPSA Lab, Grenoble, France
[3] INRIA Rennes Bretagne Atlantique, Rennes, France
来源
2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS | 2017年
关键词
COMPUTATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The graph Fourier transform (GFT) is in general dense and requires O(n(2)) time to compute and O(n(2)) memory space to store. In this paper, we pursue our previous work on the approximate fast graph Fourier transform (FGFT). The FGFT is computed via a truncated Jacobi algorithm, and is defined as the product of J Givens rotations (very sparse orthogonal matrices). The truncation parameter, J, represents a trade-off between precision of the transform and time of computation (and storage space). We explore further this trade-off and study, on different types of graphs, how is the approximation error distributed along the spectrum.
引用
收藏
页码:45 / 49
页数:5
相关论文
共 50 条
  • [21] 2D fast Fourier transform analytical solutions in all space for all gravity and magnetic components
    Boulanger, Olivier
    [J]. GEOPHYSICAL PROSPECTING, 2024, 72 (02) : 809 - 832
  • [22] Modeling solution X-ray scattering of biomacromolecules using an explicit solvent model and the fast Fourier transform
    Tong, Dudu
    Yang, Jianbin
    Lu, Lanyuan
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 : 1834 - 1842
  • [23] A Graph Repository for Learning Error-Tolerant Graph Matching
    Francisco Moreno-Garcia, Carlos
    Cortes, Xavier
    Serratosa, Francesc
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2016, 2016, 10029 : 519 - 529
  • [24] An Approximation Method for Large Graph Similarity
    Zhao, Danfeng
    Huang, Zhou
    Zhou, Feng
    Liotta, Antonio
    Huang, Dongmei
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4828 - 4835
  • [25] Fast and effective implementation of discrete quantum Fourier transform via virtual-photon-induced process in separate cavities
    Wang, Hong-Fu
    Zhang, Shou
    Zhu, Ai-Dong
    Yeon, Kyu-Hwang
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (05) : 1078 - 1084
  • [26] Explicit solution for Nonuniform Discrete Fourier Transform
    Shen, Yi
    Zhu, Chunhui
    Liu, Lijun
    Wang, Qiang
    Jin, Jing
    Lin, Yurong
    [J]. 2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [27] SPARSE FOURIER TRANSFORM VIA BUTTERFLY ALGORITHM
    Ying, Lexing
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) : 1678 - 1694
  • [28] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 240 - 264
  • [29] Error bounds for approximation in Chebyshev points
    Xiang, Shuhuang
    Chen, Xiaojun
    Wang, Haiyong
    [J]. NUMERISCHE MATHEMATIK, 2010, 116 (03) : 463 - 491
  • [30] MULTISCALE DISCRETE APPROXIMATION OF FOURIER INTEGRAL OPERATORS
    Andersson, Fredrik
    de Hoop, Maarten V.
    Wendt, Herwig
    [J]. MULTISCALE MODELING & SIMULATION, 2012, 10 (01) : 111 - 145