Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries

被引:91
作者
Sun, Qi [1 ]
Wang, Zhijie [1 ]
Zhang, Zijiao [2 ,3 ]
Yu, Qian [2 ,3 ]
Qu, Yan [4 ]
Zhang, Jingyu [5 ]
Yu, Yan [1 ]
Xiang, Bin [1 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Synerget Innovat Ctr Quantum Informat Quantum Phy, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
[2] Zhejiang Univ, Ctr Electron Microscopy, Hangzhou 310027, Zhejiang, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Sixth Element Mat Technol Co Ltd, Changzhou 213145, Jiangsu, Peoples R China
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
lithium-ion battery; MnO; graphene nanosheets; anode; nanowire morphology; ANODE MATERIAL; OXIDE; GREEN; MICROSPHERES; STORAGE; HYBRID;
D O I
10.1021/acsami.6b00122
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, transition metal oxides (TMOs) mixed with carbon materials have attracted attention as lithium-ion battery (LIB) anode materials. However, the aggregation issue in TMOs hinders the development of an ideal encapsulation structure with carbon materials. In this paper, we report graphene reinforced MnO nanowires with enhanced electrochemical performance as an anode in LIB. The graphene nanosheets (GNs)/MnO feature was confirmed by transmission electron microscopy, X-ray diffraction, Raman scattering, and X-ray photoelectron spectroscopy. The GNs/MnO nanowires delivered a highly stable discharge capacity of similar to 815 mAh g(-1) at a current density of 100 mA g(-1) after 200 cycles, which is 1.5 times higher than that of pure MnO nanowires. This GNs/MnO structure with a specific capacity of similar to 995 mAh g(-1) at a current density of 50 mA g(-1) also exhibited excellent Li storage properties. The superior cycling and high rate capability were attributed to the intimate incorporation between the MnO and GNs. The structure of the GNs/MnO nanowires effectively accommodated the volume change of the MnO nanowires and prevented structure collapse during cycling.
引用
收藏
页码:6303 / 6308
页数:6
相关论文
共 29 条
[1]   Alkali Reduction of Graphene Oxide in Molten Halide Salts: Production of Corrugated Graphene Derivatives for High-Performance Supercapacitors [J].
Abdelkader, Amr M. ;
Valles, Cristina ;
Cooper, Adam J. ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
ACS NANO, 2014, 8 (11) :11225-11233
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[4]   Raman spectroscopy as a versatile tool for studying the properties of graphene [J].
Ferrari, Andrea C. ;
Basko, Denis M. .
NATURE NANOTECHNOLOGY, 2013, 8 (04) :235-246
[5]   Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances [J].
Guo, Shimei ;
Lu, Guixia ;
Qiu, Song ;
Liu, Jiurong ;
Wang, Xinzhen ;
He, Cuizhu ;
Wei, Huige ;
Yan, Xingru ;
Guo, Zhanhu .
NANO ENERGY, 2014, 9 :41-49
[6]   Spatially Controlled Graphitization of Reduced Graphene Oxide Films via a Green Mechanical Approach [J].
Hong, Jin-Yong ;
Kong, Jing ;
Kim, Sung Hyun .
SMALL, 2014, 10 (23) :4839-4844
[7]   Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries [J].
Huang, Xiao-lei ;
Wang, Ru-zhi ;
Xu, Dan ;
Wang, Zhong-li ;
Wang, Heng-guo ;
Xu, Ji-jing ;
Wu, Zhong ;
Liu, Qing-chao ;
Zhang, Yu ;
Zhang, Xin-bo .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (35) :4345-4353
[8]   Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes [J].
Jeong, Jae-Min ;
Choi, Bong Gill ;
Lee, Soon Chang ;
Lee, Kyoung G. ;
Chang, Sung-Jin ;
Han, Young-Kyu ;
Lee, Young Boo ;
Lee, Hyun Uk ;
Kwon, Soonjo ;
Lee, Gaehang ;
Lee, Chang-Soo ;
Huh, Yun Suk .
ADVANCED MATERIALS, 2013, 25 (43) :6250-6255
[9]   Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-Ion Batteries [J].
Jiang, Hao ;
Hu, Yanjie ;
Guo, Shaojun ;
Yan, Chaoyi ;
Lee, Pooi See ;
Li, Chunzhong .
ACS NANO, 2014, 8 (06) :6038-6046
[10]   Li+ ion insertion in TiO2 (anatase) .2. Voltammetry on nanoporous films [J].
Lindstrom, H ;
Sodergren, S ;
Solbrand, A ;
Rensmo, H ;
Hjelm, J ;
Hagfeldt, A ;
Lindquist, SE .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (39) :7717-7722