ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries

被引:14
|
作者
Tian, Guiying [1 ,2 ]
Song, Yuanyuan [1 ]
Luo, Xianlin [2 ]
Zhao, Zijian [1 ]
Han, Fanfan [1 ]
Chen, Jiali [1 ]
Huang, Huaming [1 ]
Tang, Na [1 ]
Dsoke, Sonia [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol TUST, Coll Chem Engn & Mat Sci, 13th-Ave 29, Tianjin 300457, Peoples R China
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, Hermann Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
基金
中国国家自然科学基金;
关键词
Zinc sulfide; Carbon xerogel; Coulombic efficiency; Sodium-ion battery; Cycling stability; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; LITHIUM-ION; CYCLE LIFE; STORAGE; INTERCALATION; NANOSHEETS; COMPOSITES; MECHANISM; CAPACITY;
D O I
10.1016/j.jallcom.2021.160299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
zinc sulfide (ZnS) has attracted extensive attention as an electrode material for sodium-ion batteries (SIBs) due to its high capacity and abundant resource. In order to improve the cycling stability, ZnS nanoparticles embedded in N-doped porous carbon xerogel (ZnS/N-CX) were prepared via a facile electrostatic assembly, followed by a high-temperature sintering treatment. In contrast to the retention rate of bare ZnS electrode (6.4%), the ZnS/N-CX electrode shows better capacity retention (51.8%) at a current density of 0.5 A g(-1), and delivers a reversible capacity of 312 mAh g(-1) at a current density of 0.1 A g(-1). This is because the porous N-CX derived from polyelectrolytes can enhance the ZnS nanoparticles' conductivity during long-term cycling. Besides, X-ray diffraction analysis is used to confirm the (de)sodiation mechanism during the 1st cycle of the ZnS/N-CX electrode. In addition, X-ray photoelectron spectroscopy analysis indicates that polymeric components in the solid electrolyte interphase (SEI) prefer to form on the surface of loaded N-CX, resulting in a massive Na+ consumption and rapid decrease of initial Coulombic efficiency (CE). The analysis of electrochemical impedance spectroscopy reveals that the increase of interface resistance is suppressed in long-term cycling, with respect to the bare ZnS electrode. Therefore, these results prove that the synergistic approach of supporting/coating N-CX can be applied in the metal sulfides to achieve improved performance in terms of Na+ storage capacity. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Facile construction of N-doped porous carbon nanosheets derived from melamine cyanurate/xylitol for advanced sodium-ion batteries
    Ni, Xuepeng
    Li, Kunming
    Li, Dong
    Wu, Qianqian
    Chen, Haoyu
    Li, Jie
    Chen, Huifang
    Wu, Qilin
    Ju, Anqi
    Diamond and Related Materials, 2022, 126
  • [32] From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries
    Baisheng Zhao
    Yichun Ding
    Zhenhai Wen
    Transactions of Tianjin University, 2019, (05) : 429 - 436
  • [33] From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries
    Zhao B.
    Ding Y.
    Wen Z.
    Transactions of Tianjin University, 2019, 25 (05): : 429 - 436
  • [34] From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries
    Baisheng Zhao
    Yichun Ding
    Zhenhai Wen
    Transactions of Tianjin University, 2019, 25 (05) : 429 - 436
  • [35] Facile construction of N-doped porous carbon nanosheets derived from melamine cyanurate/xylitol for advanced sodium-ion batteries
    Ni, Xuepeng
    Li, Kunming
    Li, Dong
    Wu, Qianqian
    Chen, Haoyu
    Li, Jie
    Chen, Huifang
    Wu, Qilin
    Ju, Anqi
    DIAMOND AND RELATED MATERIALS, 2022, 126
  • [36] Freestanding N-Doped Carbon Coated CuO Array Anode for Lithium-Ion and Sodium-Ion Batteries
    Li, Yuejiao
    Zhang, Menglu
    Qian, Ji
    Ma, Yitian
    Li, Yu
    Li, Wanlong
    Wang, Fujie
    Li, Li
    Wu, Feng
    Chen, Renjie
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [37] CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries
    He, Xiang
    Bi, Linnan
    Li, Yao
    Xu, Chenggang
    Lin, Dunmin
    ELECTROCHIMICA ACTA, 2020, 332
  • [38] Co3O4 nanoparticles embedded in 1D porous N-doped carbon nanofibers derived from ZIFs for high-capacity sodium-ion batteries
    Yue, Ziwei
    Li, Haotian
    Chu, Jingjing
    Qu, Gaoyang
    Fu, Chaochao
    Li, Xiaowei
    Li, Ling
    Li, Xiaoting
    Zhang, Wenming
    COMPOSITES PART B-ENGINEERING, 2019, 177
  • [39] N-doped carbon nanoparticles on highly porous carbon nanofiber electrodes for sodium ion batteries (vol 13, pg 7834, 2023)
    Yanilmaz, Meltem
    Atici, Buelin
    Zhu, Jiadeng
    Toprakci, Ozan
    Kim, Juran
    RSC ADVANCES, 2025, 15 (08) : 6370 - 6370
  • [40] N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries
    Wang, Ning
    Liu, Qinglei
    Sun, Boya
    Gu, Jiajun
    Yu, Boxuan
    Zhang, Wang
    Zhang, Di
    SCIENTIFIC REPORTS, 2018, 8