ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries

被引:14
|
作者
Tian, Guiying [1 ,2 ]
Song, Yuanyuan [1 ]
Luo, Xianlin [2 ]
Zhao, Zijian [1 ]
Han, Fanfan [1 ]
Chen, Jiali [1 ]
Huang, Huaming [1 ]
Tang, Na [1 ]
Dsoke, Sonia [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol TUST, Coll Chem Engn & Mat Sci, 13th-Ave 29, Tianjin 300457, Peoples R China
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, Hermann Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
基金
中国国家自然科学基金;
关键词
Zinc sulfide; Carbon xerogel; Coulombic efficiency; Sodium-ion battery; Cycling stability; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; LITHIUM-ION; CYCLE LIFE; STORAGE; INTERCALATION; NANOSHEETS; COMPOSITES; MECHANISM; CAPACITY;
D O I
10.1016/j.jallcom.2021.160299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
zinc sulfide (ZnS) has attracted extensive attention as an electrode material for sodium-ion batteries (SIBs) due to its high capacity and abundant resource. In order to improve the cycling stability, ZnS nanoparticles embedded in N-doped porous carbon xerogel (ZnS/N-CX) were prepared via a facile electrostatic assembly, followed by a high-temperature sintering treatment. In contrast to the retention rate of bare ZnS electrode (6.4%), the ZnS/N-CX electrode shows better capacity retention (51.8%) at a current density of 0.5 A g(-1), and delivers a reversible capacity of 312 mAh g(-1) at a current density of 0.1 A g(-1). This is because the porous N-CX derived from polyelectrolytes can enhance the ZnS nanoparticles' conductivity during long-term cycling. Besides, X-ray diffraction analysis is used to confirm the (de)sodiation mechanism during the 1st cycle of the ZnS/N-CX electrode. In addition, X-ray photoelectron spectroscopy analysis indicates that polymeric components in the solid electrolyte interphase (SEI) prefer to form on the surface of loaded N-CX, resulting in a massive Na+ consumption and rapid decrease of initial Coulombic efficiency (CE). The analysis of electrochemical impedance spectroscopy reveals that the increase of interface resistance is suppressed in long-term cycling, with respect to the bare ZnS electrode. Therefore, these results prove that the synergistic approach of supporting/coating N-CX can be applied in the metal sulfides to achieve improved performance in terms of Na+ storage capacity. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries
    Li, Jiabao
    Yan, Dong
    Zhang, Xiaojie
    Hou, Shujin
    Lu, Ting
    Yao, Yefeng
    Pan, Likun
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (38) : 20428 - 20438
  • [22] Hollow spheres constructed by ZnS-CoS2 @N-doped carbon@N-doped carbon as anodes for high-performance sodium-ion batteries
    He, Haishan
    Li, Mingquan
    Gan, Yunfei
    Mou, Jirong
    Yuan, Jujun
    Zhang, Xianke
    Li, Bin
    Yu, Jing
    Zhang, Chao
    Li, Xiaokang
    Liu, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 979
  • [23] Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite
    Park, Seung-Keun
    Kim, Jin Koo
    Kang, Yun Chan
    CHEMICAL ENGINEERING JOURNAL, 2017, 328 : 546 - 555
  • [24] Rational Design of Embedded CoTe2 Nanoparticles in Freestanding N-Doped Multichannel Carbon Fibers for Sodium-Ion Batteries with Ultralong Cycle Lifespan
    Zhang, Wei
    Wang, Xuewen
    Wong, Ka Wai
    Zhang, Wang
    Chen, Tong
    Zhao, Weiming
    Huang, Shaoming
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34134 - 34144
  • [25] N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries
    Wang, Yong
    Li, Yong
    Mao, Samuel S.
    Ye, Daixin
    Liu, Wen
    Guo, Rui
    Feng, Zhenhe
    Kong, Jilie
    Xie, Jingying
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (03): : 717 - 722
  • [26] In situ incorporation of nanostructured antimony in an N-doped carbon matrix for advanced sodium-ion batteries
    Wu, Zhibin
    Johannessen, Bernt
    Zhang, Wenchao
    Pang, Wei Kong
    Mao, Jianfeng
    Liu, Hua Kun
    Guo, Zaiping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (20) : 12842 - 12850
  • [27] CoTe2 encapsulated in N-doped carbon nanonecklace as an anode for sodium-ion batteries
    Du, Yang
    Wang, Yu
    Wang, Ya Bo
    Wen, Zi
    Yang, Chun Cheng
    Jiang, Qing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 960
  • [28] Research on Electrode Materials for Sodium-Ion Batteries
    Zhang Ning
    Liu Yong-Chang
    Chen Cheng-Cheng
    Tao Zhan-Liang
    Chen Jun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2015, 31 (09) : 1739 - 1750
  • [29] Polymer Electrode Materials for Sodium-ion Batteries
    Zhao, Qinglan
    Whittaker, Andrew K.
    Zhao, X. S.
    MATERIALS, 2018, 11 (12)
  • [30] SnCo Nanoparticles Loaded in Hollow Carbon Spheres Interlinked by N-Doped Carbon Fibers for High-Performance Sodium-Ion Batteries
    Zhang, Shengqiang
    Dang, Jie
    Liu, Chengxin
    Ren, Tiantian
    Liu, Xiaojie
    INORGANIC CHEMISTRY, 2023, 62 (19) : 7393 - 7402