ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries

被引:14
|
作者
Tian, Guiying [1 ,2 ]
Song, Yuanyuan [1 ]
Luo, Xianlin [2 ]
Zhao, Zijian [1 ]
Han, Fanfan [1 ]
Chen, Jiali [1 ]
Huang, Huaming [1 ]
Tang, Na [1 ]
Dsoke, Sonia [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol TUST, Coll Chem Engn & Mat Sci, 13th-Ave 29, Tianjin 300457, Peoples R China
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, Hermann Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
基金
中国国家自然科学基金;
关键词
Zinc sulfide; Carbon xerogel; Coulombic efficiency; Sodium-ion battery; Cycling stability; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; LITHIUM-ION; CYCLE LIFE; STORAGE; INTERCALATION; NANOSHEETS; COMPOSITES; MECHANISM; CAPACITY;
D O I
10.1016/j.jallcom.2021.160299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
zinc sulfide (ZnS) has attracted extensive attention as an electrode material for sodium-ion batteries (SIBs) due to its high capacity and abundant resource. In order to improve the cycling stability, ZnS nanoparticles embedded in N-doped porous carbon xerogel (ZnS/N-CX) were prepared via a facile electrostatic assembly, followed by a high-temperature sintering treatment. In contrast to the retention rate of bare ZnS electrode (6.4%), the ZnS/N-CX electrode shows better capacity retention (51.8%) at a current density of 0.5 A g(-1), and delivers a reversible capacity of 312 mAh g(-1) at a current density of 0.1 A g(-1). This is because the porous N-CX derived from polyelectrolytes can enhance the ZnS nanoparticles' conductivity during long-term cycling. Besides, X-ray diffraction analysis is used to confirm the (de)sodiation mechanism during the 1st cycle of the ZnS/N-CX electrode. In addition, X-ray photoelectron spectroscopy analysis indicates that polymeric components in the solid electrolyte interphase (SEI) prefer to form on the surface of loaded N-CX, resulting in a massive Na+ consumption and rapid decrease of initial Coulombic efficiency (CE). The analysis of electrochemical impedance spectroscopy reveals that the increase of interface resistance is suppressed in long-term cycling, with respect to the bare ZnS electrode. Therefore, these results prove that the synergistic approach of supporting/coating N-CX can be applied in the metal sulfides to achieve improved performance in terms of Na+ storage capacity. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Polymer Electrode Materials for Sodium-ion Batteries
    Zhao, Qinglan
    Whittaker, Andrew K.
    Zhao, X. S.
    MATERIALS, 2018, 11 (12)
  • [22] FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries
    Lu, Zhenxiao
    Zhai, Yanjun
    Wang, Nana
    Zhang, Yaohui
    Xue, Pan
    Guo, Meiqing
    Tang, Bin
    Huang, Di
    Wang, Wenxian
    Bai, Zhongchao
    Dou, Shixue
    CHEMICAL ENGINEERING JOURNAL, 2020, 380
  • [23] In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries
    He, Yanyan
    Wang, Lu
    Dong, Caifu
    Li, Chuanchuan
    Ding, Xuyang
    Qian, Yitai
    Xu, Liqiang
    ENERGY STORAGE MATERIALS, 2019, 23 : 35 - 45
  • [24] MoC ultrafine nanoparticles confined in porous graphitic carbon as extremely stable anode materials for lithium- and sodium-ion batteries
    Li, Minchan
    Yu, Sicen
    Chen, Zhenhua
    Wang, Zhenyu
    Lv, Fucong
    Nan, Bo
    Zhu, Yinggang
    Shi, Yang
    Wang, Wenxi
    Wu, Shaofei
    Liu, Hongtao
    Tang, Yougen
    Lu, Zhouguang
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (02): : 289 - 295
  • [25] Constructing high-performance N-doped carbon nanotubes anode by tuning interlayer spacing and the compatibility mechanism with ether electrolyte for sodium-ion batteries
    Zhao, Yanhong
    Hu, Zhuang
    Fan, Changling
    Liu, Zhixiao
    Zhang, Ruisheng
    Han, Shaochang
    Liu, Jinshui
    Liu, Jilei
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [26] Constructing FeTe2 nanoparticles embedded in N-doped carbon nanofiber composites as a long-life and high-rate anode material for sodium-ion batteries
    Lin, Zihua
    Zhang, Haiyan
    Yang, Changsheng
    Liu, Zhenjiang
    Wen, Daofeng
    Peng, Xiang
    Li, Shengkai
    Wu, Xia
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (05) : 934 - 941
  • [27] Facile construction of N-doped porous carbon nanosheets derived from melamine cyanurate/xylitol for advanced sodium-ion batteries
    Ni, Xuepeng
    Li, Kunming
    Li, Dong
    Wu, Qianqian
    Chen, Haoyu
    Li, Jie
    Chen, Huifang
    Wu, Qilin
    Ju, Anqi
    DIAMOND AND RELATED MATERIALS, 2022, 126
  • [28] Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries
    Zhang, Dong Mei
    Jia, Jian Hui
    Yang, Chun Cheng
    Jiang, Qing
    ENERGY STORAGE MATERIALS, 2020, 24 : 439 - 449
  • [29] Highly Dispersed ZnSe Nanoparticles Embedded in N-Doped Porous Carbon Matrix as an Anode for Potassium Ion Batteries
    Hu, Yi
    Lu, Tiantian
    Zhang, Ya
    Sun, Yongwen
    Liu, Jinlong
    Wei, Denghu
    Ju, Zhicheng
    Zhuang, Quanchao
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2019, 36 (10)
  • [30] Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries
    Zhong, Xiongwu
    Wu, Ying
    Zeng, Sifan
    Yu, Yan
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (10) : 1248 - 1265