ZnS nanoparticles embedded in N-doped porous carbon xerogel as electrode materials for sodium-ion batteries

被引:14
|
作者
Tian, Guiying [1 ,2 ]
Song, Yuanyuan [1 ]
Luo, Xianlin [2 ]
Zhao, Zijian [1 ]
Han, Fanfan [1 ]
Chen, Jiali [1 ]
Huang, Huaming [1 ]
Tang, Na [1 ]
Dsoke, Sonia [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol TUST, Coll Chem Engn & Mat Sci, 13th-Ave 29, Tianjin 300457, Peoples R China
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, Hermann Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Helmholtz Inst Ulm Electrochem Energy Storage HIU, Helmholtzstr 11, D-89081 Ulm, Germany
基金
中国国家自然科学基金;
关键词
Zinc sulfide; Carbon xerogel; Coulombic efficiency; Sodium-ion battery; Cycling stability; REDUCED GRAPHENE OXIDE; HIGH-PERFORMANCE ANODE; LITHIUM-ION; CYCLE LIFE; STORAGE; INTERCALATION; NANOSHEETS; COMPOSITES; MECHANISM; CAPACITY;
D O I
10.1016/j.jallcom.2021.160299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
zinc sulfide (ZnS) has attracted extensive attention as an electrode material for sodium-ion batteries (SIBs) due to its high capacity and abundant resource. In order to improve the cycling stability, ZnS nanoparticles embedded in N-doped porous carbon xerogel (ZnS/N-CX) were prepared via a facile electrostatic assembly, followed by a high-temperature sintering treatment. In contrast to the retention rate of bare ZnS electrode (6.4%), the ZnS/N-CX electrode shows better capacity retention (51.8%) at a current density of 0.5 A g(-1), and delivers a reversible capacity of 312 mAh g(-1) at a current density of 0.1 A g(-1). This is because the porous N-CX derived from polyelectrolytes can enhance the ZnS nanoparticles' conductivity during long-term cycling. Besides, X-ray diffraction analysis is used to confirm the (de)sodiation mechanism during the 1st cycle of the ZnS/N-CX electrode. In addition, X-ray photoelectron spectroscopy analysis indicates that polymeric components in the solid electrolyte interphase (SEI) prefer to form on the surface of loaded N-CX, resulting in a massive Na+ consumption and rapid decrease of initial Coulombic efficiency (CE). The analysis of electrochemical impedance spectroscopy reveals that the increase of interface resistance is suppressed in long-term cycling, with respect to the bare ZnS electrode. Therefore, these results prove that the synergistic approach of supporting/coating N-CX can be applied in the metal sulfides to achieve improved performance in terms of Na+ storage capacity. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Ultrafine ZnS nanoparticles embedded in N-doped carbon as advanced anode materials for lithium ion batteries and sodium ion batteries
    Wang, Longchao
    Li, Dan
    Li, Qianqian
    Pan, Qichang
    Zhang, Man
    Zhang, Lixuan
    Zheng, Fenghua
    Huang, Youguo
    Wang, Hongqiang
    Li, Qingyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 910
  • [2] ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries
    Fu, Yun
    Zhang, Zhian
    Yang, Xing
    Gan, Yongqin
    Chen, Wei
    RSC ADVANCES, 2015, 5 (106) : 86941 - 86944
  • [3] Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries
    Liu, Yongchang
    Zhang, Ning
    Liu, Xiaobin
    Chen, Chengcheng
    Fan, Li-Zhen
    Jiao, Lifang
    ENERGY STORAGE MATERIALS, 2017, 9 : 170 - 178
  • [4] Ultrafine SnO2Nanoparticles Decorated on N-Doped HighlyStructurally Connected Carbon Nanospheres as Anode Materials forHigh-Performance Sodium-Ion Batteries
    Li, Rui
    Qing, Long
    Emori, Wilfred
    Su, Wei
    Zhao, Wei
    Chen, Jian
    Yu, Guan Ting
    Lin, Jarrn Horng
    ENERGY & FUELS, 2022, 36 (09) : 4957 - 4966
  • [5] Mo2C/N-doped carbon nanowires as anode materials for sodium-ion batteries
    Li, Xiang
    Deng, Mengdie
    Zhang, Wenbiao
    Gao, Qingsheng
    Wang, Hui
    Yuan, Bin
    Yang, Lichun
    Zhu, Min
    MATERIALS LETTERS, 2017, 194 : 30 - 33
  • [6] Three-dimensional porous N-doped graphite carbon with embedded CoS2 nanoparticles as advanced anode for sodium-ion batteries
    Zheng, Yayun
    He, Lang
    Kong, Xirui
    Song, Yi
    Zhao, Yan
    APPLIED SURFACE SCIENCE, 2022, 603
  • [7] Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries
    Zhao, Bo
    Liu, Qianqian
    Wei, Guijuan
    Wang, Jianghao
    Yu, Xin-Yao
    Li, Xiang
    Wu, Hao Bin
    CHEMICAL ENGINEERING JOURNAL, 2019, 378
  • [8] CoTe2 encapsulated in N-doped carbon nanonecklace as an anode for sodium-ion batteries
    Du, Yang
    Wang, Yu
    Wang, Ya Bo
    Wen, Zi
    Yang, Chun Cheng
    Jiang, Qing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 960
  • [9] ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries
    Qin, Wei
    Li, Dongsheng
    Zhang, Xiaojie
    Yan, Dong
    Hu, Bingwen
    Pan, Likun
    ELECTROCHIMICA ACTA, 2016, 191 : 435 - 443
  • [10] Hard carbon anode materials for sodium-ion batteries
    El Moctar, Ismaila
    Ni, Qiao
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)