Random matrix theory and discrete moments of the Riemann zeta function

被引:14
作者
Hughes, CP [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 12期
关键词
D O I
10.1088/0305-4470/36/12/303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.
引用
收藏
页码:2907 / 2917
页数:11
相关论文
共 18 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS 9
[3]   LARGE GAPS BETWEEN ZEROS OF THE ZETA-FUNCTION [J].
CONREY, JB ;
GHOSH, A ;
GONEK, SM .
MATHEMATIKA, 1986, 33 (66) :212-238
[4]  
Conrey JB, 1998, INT MATH RES NOTICES, V1998, P775
[5]   High moments of the Riemann zeta-function [J].
Conrey, JB ;
Gonek, SM .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (03) :577-604
[6]   SELBERG CORRELATION INTEGRALS AND THE 1/R2 QUANTUM MANY-BODY SYSTEM [J].
FORRESTER, PJ .
NUCLEAR PHYSICS B, 1992, 388 (03) :671-699
[7]   ON NEGATIVE MOMENTS OF THE RIEMANN ZETA-FUNCTION [J].
GONEK, SM .
MATHEMATIKA, 1989, 36 (71) :71-88
[8]   MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION AND ITS DERIVATIVES [J].
GONEK, SM .
INVENTIONES MATHEMATICAE, 1984, 75 (01) :123-141
[9]  
Hardy GH, 1918, ACTA MATH-DJURSHOLM, V41, P119
[10]   Random matrix theory and the derivative of the Riemann zeta function [J].
Hughes, CP ;
Keating, JP ;
O'Connell, N .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2003) :2611-2627