Advances in Latent Variable Mixture Models

被引:2
|
作者
Rigdon, Edward E. [1 ]
机构
[1] Georgia State Univ, Robinson Coll Business, Dept Mkt, Atlanta, GA 30302 USA
关键词
NUMBER;
D O I
10.1080/10705511003661595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:350 / 354
页数:5
相关论文
共 50 条
  • [1] Fitting latent variable mixture models
    Lubke, Gitta H.
    Luningham, Justin
    BEHAVIOUR RESEARCH AND THERAPY, 2017, 98 : 91 - 102
  • [2] Latent variable mixture models: a promising approach for the validation of patient reported outcomes
    Sawatzky, Richard
    Ratner, Pamela A.
    Kopec, Jacek A.
    Zumbo, Bruno D.
    QUALITY OF LIFE RESEARCH, 2012, 21 (04) : 637 - 650
  • [3] Latent mixture models for multivariate and longitudinal outcomes
    Pickles, Andrew
    Croudace, Tim
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2010, 19 (03) : 271 - 289
  • [4] A Systematic Literature Review of Latent Variable Mixture Modeling in Communication Scholarship
    Krawietz, Colton E.
    Pett, Rudy C.
    COMMUNICATION METHODS AND MEASURES, 2023, 17 (02) : 83 - 110
  • [5] Detecting Latent Classes Through Mediation in Regression Mixture Models
    Bibriescas, Natashia
    Whittaker, Tiffany A.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (03) : 449 - 457
  • [6] An Introduction to Latent Variable Mixture Modeling (Part 1): Overview and Cross-Sectional Latent Class and Latent Profile Analyses
    Berlin, Kristoffer S.
    Williams, Natalie A.
    Parra, Gilbert R.
    JOURNAL OF PEDIATRIC PSYCHOLOGY, 2014, 39 (02) : 174 - 187
  • [7] Latent Variable Mixture Modeling A Flexible Statistical Approach for Identifying and Classifying Heterogeneity
    Schmiege, Sarah J.
    Meek, Paula
    Bryan, Angela D.
    Petersen, Hans
    NURSING RESEARCH, 2012, 61 (03) : 204 - 212
  • [8] Learning Binary Latent Variable Models: A Tensor Eigenpair Approach
    Jaffe, Ariel
    Weiss, Roi
    Carmi, Shai
    Kluger, Yuval
    Nadler, Boaz
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [9] Learning latent variable structured prediction models with Gaussian perturbations
    Bello, Kevin
    Honorio, Jean
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [10] Applying and Interpreting Mixture Distribution Latent State-Trait Models
    Litson, Kaylee
    Thornhill, Carly
    Geiser, Christian
    Burns, G. Leonard
    Servera, Mateu
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (06) : 931 - 947