Dynamics of MHD instabilities near a ferromagnetic wall

被引:4
作者
Hughes, P. E. [1 ,2 ]
Levesque, J. P. [1 ]
Navratil, G. A. [1 ]
机构
[1] Columbia Univ, Plasma Phys Lab, New York, NY 10027 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
tokamaks; magnetohydrodynamics; plasma instabilities; ferromagnetic resistive wall mode; MAGNETIC-FIELD; TOKAMAK;
D O I
10.1088/1741-4326/aade58
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Prospective fusion component testing and DEMO power reactor concepts are expected to employ low-activation ferritic steels because of their ability to withstand the high neutron flux of the reactor environment. However, theory suggests that ferromagnetic material may amplify certain external MHD instabilities. Using its ferromagnetic-resistive wall mode (FRWM) upgrade, the High Beta Tokamak-Extended Pulse (HBT-EP) experiment has observed approximately doubled growth rates when operating with a close-fitting ferromagnetic first wall, compared to operation with a stainless steel first wall. The presence of a ferromagnetic wall correlates with earlier disruptions, and FRWM growth rates increase with decreasing mode rotation, as expected due to the increased skin depth allowing greater mode interaction with the bulk ferromagnetic material. It is also seen that introducing low-n asymmetries into the toroidal distribution of ferromagnetic material, similar to the ITER test blanket module toroidal asymmetry, changes the phase preference of rotating modes; meanwhile, a similar change in purely conducting material does not significantly change the mode's phase preference.
引用
收藏
页数:9
相关论文
共 29 条
[1]   Observation of Resistive and Ferritic Wall Modes in a Line-Tied Pinch [J].
Bergerson, W. F. ;
Hannum, D. A. ;
Hegna, C. C. ;
Kendrick, R. D. ;
Sarff, J. S. ;
Forest, C. B. .
PHYSICAL REVIEW LETTERS, 2008, 101 (23)
[2]   STABILIZATION OF EXTERNAL-MODES IN TOKAMAKS BY RESISTIVE WALLS AND PLASMA ROTATION [J].
BONDESON, A ;
WARD, DJ .
PHYSICAL REVIEW LETTERS, 1994, 72 (17) :2709-2712
[3]  
DeBono B., 2014, THESIS
[4]  
DEWIT TD, 1994, PHYS PLASMAS, V1, P3288, DOI 10.1063/1.870481
[5]   Preparation of interfaces in ITER for integrating the Test Blanket Systems [J].
Giancarli, L. ;
Bede, O. ;
Beloglazov, S. ;
Benchikhoune, M. ;
Chang, K. P. ;
Chuyanov, V. ;
Dell'Orco, G. ;
Friconneau, J. P. ;
Gicquel, S. ;
Gliss, C. ;
Hansalia, C. ;
Iseli, M. ;
Kim, C. S. ;
Kuehn, I. ;
Levesy, B. ;
Maluta, F. T. ;
Merola, M. ;
Pascal, R. ;
Patisson, L. ;
Rigoni, G. ;
Snipes, J. ;
Tesini, A. ;
Yonekawa, I. .
FUSION ENGINEERING AND DESIGN, 2010, 85 (10-12) :1829-1833
[6]  
Hughes P, 2016, THESIS
[7]   Design and installation of a ferromagnetic wall in tokamak geometry [J].
Hughes, P. E. ;
Levesque, J. P. ;
Rivera, N. ;
Mauel, M. E. ;
Navratil, G. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (10)
[8]  
Kadomtsev B., 1993, Tokamak Plasma: A Complex Physical System
[9]   Low-activation ferritic and martensitic steels for fusion application [J].
Kohyama, A ;
Hishinuma, A ;
Gelles, DS ;
Klueh, RL ;
Dietz, W ;
Ehrlich, K .
JOURNAL OF NUCLEAR MATERIALS, 1996, 233 :138-147
[10]   Ferromagnetic and resistive wall effects on the beta limit in a tokamak [J].
Kurita, G ;
Tuda, T ;
Azumi, M ;
Ishida, S ;
Takeji, S ;
Sakasai, A ;
Matsukawa, M ;
Ozeki, T ;
Kikuchi, M .
NUCLEAR FUSION, 2003, 43 (09) :949-954