Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures

被引:193
作者
Gao, Huang [1 ,3 ]
Hu, Yaowu [1 ,3 ]
Xuan, Yi [2 ,3 ]
Li, Ji [1 ,3 ]
Yang, Yingling [1 ,3 ]
Martinez, Ramses V. [4 ,5 ]
Li, Chunyu [3 ,6 ]
Luo, Jian [7 ]
Qi, Minghao [2 ,3 ]
Cheng, Gary J. [1 ,3 ,8 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[5] IMDEA Nanosci, Madrid Inst Adv Studies, Madrid 28049, Spain
[6] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[7] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[8] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
MICROMETER-SCALE; DIRECT IMPRINT; PLASMONICS; ALLOYS; SUPERPLASTICITY; NANOSTRUCTURES; METAMATERIALS; LITHOGRAPHY; COMPOSITES; PLASTICITY;
D O I
10.1126/science.1260139
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a low-cost, high-throughput benchtop method that enables thin layers of metal to be shaped with nanoscale precision by generating ultrahigh-strain-rate deformations. Laser shock imprinting can create three-dimensional crystalline metallic structures as small as 10 nanometers with ultrasmooth surfaces at ambient conditions. This technique enables the successful fabrications of large-area, uniform nanopatterns with aspect ratios as high as 5 for plasmonic and sensing applications, as well as mechanically strengthened nanostructures and metal-graphene hybrid nanodevices.
引用
收藏
页码:1352 / 1356
页数:5
相关论文
共 50 条
[31]   Large-scale dispersion of the hierarchical (1D, 2D and 3D) carbonaceous nanofillers in thermoplastic polyurethane through supramolecular self-assembly and extrusion [J].
Mandal, Subhash ;
Roy, Debmalya ;
Mukhopadhyay, Kingsuk ;
Dwivedi, Mayank ;
Joshi, Mangala .
COMPOSITE INTERFACES, 2024, 31 (05) :559-582
[32]   Direct-Write 3D Nanoprinting of Plasmonic Structures [J].
Winkler, Robert ;
Schrnidt, Franz-Philipp ;
Haselinann, Ulrich ;
Fowlkes, Jason D. ;
Lewis, Brett B. ;
Kothleitner, Gerald ;
Rack, Philip D. ;
Plank, Harald .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (09) :8233-8240
[33]   Mechanical properties of nanoporous metallic glasses: Insights from large-scale atomic simulations [J].
Lin, Wei-Hui ;
Teng, Yun ;
Sha, Zhen-Dong ;
Yuan, Su-Yue ;
Branicio, Paulo Sergio .
INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 127
[34]   Facile and large-scale synthesis of single-crystalline manganese oxyhydroxide/oxide nanostructures [J].
Fang, Zhen ;
Tang, Kaibin ;
Gao, Lisheng ;
Wang, Dong ;
Zeng, Suyuan ;
Liu, Qiangchun .
MATERIALS RESEARCH BULLETIN, 2007, 42 (09) :1761-1768
[35]   Large-scale synthesis of 3D sphere-like hierarchical Ni(OH)2 nanofibers for high-performance electrochemical supercapacitors [J].
Li, Weihong ;
Yang, Long-Lai ;
Lin, Bin ;
Isimjan, Tayirjan T. ;
Yang, De-Quan ;
Hu, Yingying ;
Hu, Zhongai ;
Sacher, E. .
MATERIALS RESEARCH EXPRESS, 2015, 2 (09)
[36]   Fano resonance in 3D system of metallic nanoparticles [J].
Melikyan, A. O. ;
Minasian, H. R. ;
Petrosyan, P. A. .
JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (04) :317-323
[37]   Additive manufacturing and 3D printing of metallic biomaterials [J].
Chua K. ;
Khan I. ;
Malhotra R. ;
Zhu D. .
Engineered Regeneration, 2021, 2 :288-299
[38]   Two-scale 3D printed steel fiber reinforcements strategy for concrete structures [J].
Li, Shuai ;
Khieu, Hai Hoang ;
Black, Jay R. ;
Nguyen-Xuan, H. ;
Tran, Phuong .
CONSTRUCTION AND BUILDING MATERIALS, 2025, 458
[39]   3D rutile titania-based structures with Morpho butterfly wing scale morphologies [J].
Weatherspoon, Michael R. ;
Cai, Ye ;
Crne, Matija ;
Srinivasarao, Mohan ;
Sandhage, Kenneth H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (41) :7921-7923
[40]   Surface Preparation and Treatment for Large-Scale 3D-Printed Composite Tooling Coating Adhesion [J].
Sauerbier, Philipp ;
Anderson, James ;
Gardner, Douglas J. .
COATINGS, 2018, 8 (12)