Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures

被引:193
作者
Gao, Huang [1 ,3 ]
Hu, Yaowu [1 ,3 ]
Xuan, Yi [2 ,3 ]
Li, Ji [1 ,3 ]
Yang, Yingling [1 ,3 ]
Martinez, Ramses V. [4 ,5 ]
Li, Chunyu [3 ,6 ]
Luo, Jian [7 ]
Qi, Minghao [2 ,3 ]
Cheng, Gary J. [1 ,3 ,8 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[5] IMDEA Nanosci, Madrid Inst Adv Studies, Madrid 28049, Spain
[6] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[7] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[8] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
MICROMETER-SCALE; DIRECT IMPRINT; PLASMONICS; ALLOYS; SUPERPLASTICITY; NANOSTRUCTURES; METAMATERIALS; LITHOGRAPHY; COMPOSITES; PLASTICITY;
D O I
10.1126/science.1260139
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a low-cost, high-throughput benchtop method that enables thin layers of metal to be shaped with nanoscale precision by generating ultrahigh-strain-rate deformations. Laser shock imprinting can create three-dimensional crystalline metallic structures as small as 10 nanometers with ultrasmooth surfaces at ambient conditions. This technique enables the successful fabrications of large-area, uniform nanopatterns with aspect ratios as high as 5 for plasmonic and sensing applications, as well as mechanically strengthened nanostructures and metal-graphene hybrid nanodevices.
引用
收藏
页码:1352 / 1356
页数:5
相关论文
共 50 条
[21]   Evolution of 3D weaving and 3D woven fabric structures [J].
Yasith Sanura Perera ;
Rajapaksha Mudiyanselage Himal Widooshaka Muwanwella ;
Philip Roshan Fernando ;
Sandun Keerthichandra Fernando ;
Thantirige Sanath Siroshana Jayawardana .
Fashion and Textiles, 8
[22]   Evolution of 3D weaving and 3D woven fabric structures [J].
Perera, Yasith Sanura ;
Muwanwella, Rajapaksha Mudiyanselage Himal Widooshaka ;
Fernando, Philip Roshan ;
Fernando, Sandun Keerthichandra ;
Jayawardana, Thantirige Sanath Siroshana .
FASHION AND TEXTILES, 2021, 8 (01)
[23]   Large-scale fabrication of flexible metallic nanostructure pairs using interference ablation [J].
Zhai, Tianrui ;
Wang, Yonglu ;
Liu, Hongmei ;
Zhang, Xinping .
OPTICS EXPRESS, 2015, 23 (02) :1863-1870
[24]   Large-scale synthesis of single-crystalline CuO nanoplatelets by a hydrothermal process [J].
Liu, Q ;
Liu, HJ ;
Liang, YY ;
Xu, Z ;
Yin, G .
MATERIALS RESEARCH BULLETIN, 2006, 41 (04) :697-702
[25]   Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline silicon [J].
Berenschot, Erwin J. W. ;
Jansen, Henri V. ;
Tas, Niels R. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (05)
[26]   Large-scale preparation of porous ultrathin Ga-doped ZnO nanoneedles from 3D basic zinc carbonate superstructures [J].
Du, Shangfeng ;
Liu, Haidi ;
Chen, Yunfa .
NANOTECHNOLOGY, 2009, 20 (08)
[27]   Mechanical-Agitation-Assisted Growth of Large-Scale and Uniform ZnO Nanorod Arrays within 3D Multichannel Monolithic Substrates [J].
Xiao, Wen ;
Guo, Yanbing ;
Ren, Zheng ;
Wrobel, Gregory ;
Ren, Zhuyin ;
Lu, Tianfeng ;
Gao, Pu-Xian .
CRYSTAL GROWTH & DESIGN, 2013, 13 (08) :3657-3664
[28]   Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties [J].
Huang, Jiarui ;
Xu, Xiaojuan ;
Gu, Cuiping ;
Yang, Min ;
Yang, Meng ;
Liu, Jinhuai .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (35) :13283-13289
[29]   Large-Scale Fluidic Tuning of Sub-wavelength Periodic Structures [J].
Bhattacharjee, Tonmoy ;
Jiang, Hongrui ;
Behdad, Nader .
2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, :137-140
[30]   Integration of nano-scale components and supports in micromachined 3D silicon structures [J].
Song, J. ;
Azimi, S. ;
Dang, Z. Y. ;
Breese, M. B. H. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2014, 24 (04)