Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures

被引:193
作者
Gao, Huang [1 ,3 ]
Hu, Yaowu [1 ,3 ]
Xuan, Yi [2 ,3 ]
Li, Ji [1 ,3 ]
Yang, Yingling [1 ,3 ]
Martinez, Ramses V. [4 ,5 ]
Li, Chunyu [3 ,6 ]
Luo, Jian [7 ]
Qi, Minghao [2 ,3 ]
Cheng, Gary J. [1 ,3 ,8 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[4] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[5] IMDEA Nanosci, Madrid Inst Adv Studies, Madrid 28049, Spain
[6] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[7] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[8] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
MICROMETER-SCALE; DIRECT IMPRINT; PLASMONICS; ALLOYS; SUPERPLASTICITY; NANOSTRUCTURES; METAMATERIALS; LITHOGRAPHY; COMPOSITES; PLASTICITY;
D O I
10.1126/science.1260139
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a low-cost, high-throughput benchtop method that enables thin layers of metal to be shaped with nanoscale precision by generating ultrahigh-strain-rate deformations. Laser shock imprinting can create three-dimensional crystalline metallic structures as small as 10 nanometers with ultrasmooth surfaces at ambient conditions. This technique enables the successful fabrications of large-area, uniform nanopatterns with aspect ratios as high as 5 for plasmonic and sensing applications, as well as mechanically strengthened nanostructures and metal-graphene hybrid nanodevices.
引用
收藏
页码:1352 / 1356
页数:5
相关论文
共 50 条
[1]   Nanoporous Metallic Network as a Large-Scale 3D Source of Second Harmonic Light [J].
Ron, Racheli ;
Shavit, Omer ;
Aharon, Hannah ;
Zielinski, Marcin ;
Galanty, Matan ;
Salomon, Adi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (41) :25331-25340
[2]   3D printing of large, complex metallic glass structures [J].
Shen, Yiyu ;
Li, Yingqi ;
Chen, Chen ;
Tsai, Hai-Lung .
MATERIALS & DESIGN, 2017, 117 :213-222
[3]   Ag Nanocrystals Intercalated Muscovite Mesocrystal for Large-Scale 3D SERS [J].
Sung, Chia-Yun ;
Tu, Yu-Hao ;
Thi Quynh, Le ;
Su, Ching-Min ;
Wu, Hung-Yi ;
Chen, Lu-Hsing ;
Chen, Kuo-Ping ;
Hsieh, Wan-Zhen ;
Chiang, Ching-Yu ;
Cheng, Wen-Hui Sophia ;
Chu, Ying-Hao .
NANO LETTERS, 2025, 25 (30) :11632-11639
[4]   Large-Area 3D Chiral Plasmonic Structures [J].
Frank, Bettina ;
Yin, Xinghui ;
Schaeferling, Martin ;
Zhao, Jun ;
Hein, Sven M. ;
Braun, Paul V. ;
Giessen, Harald .
ACS NANO, 2013, 7 (07) :6321-6329
[5]   Manufacturing of 3D submicronic structures at wafer scale [J].
Rodas, Diana Fernandez ;
Reche, Jerome ;
Mendes, Ivanie ;
Tiron, Raluca .
NOVEL PATTERNING TECHNOLOGIES 2024, 2024, 12956
[6]   A Review of the Extruder System Design for Large-Scale Extrusion-Based 3D Concrete Printing [J].
Chen, Hao ;
Zhang, Daobo ;
Chen, Peng ;
Li, Ning ;
Perrot, Arnaud .
MATERIALS, 2023, 16 (07)
[7]   3D micro/nanoshaping of metal strip arrays by direct imprinting for chiral metasurfaces [J].
Golod, S., V ;
Gayduk, A. E. ;
Kurus, N. N. ;
Kubarev, V. V. ;
Prinz, V. Ya .
NANOTECHNOLOGY, 2020, 31 (43)
[8]   A scalable framework for large-scale 3D multimaterial topology optimization with octree-based mesh adaptation [J].
Chin, Ting Wei ;
Leader, Mark K. ;
Kennedy, Graeme J. .
ADVANCES IN ENGINEERING SOFTWARE, 2019, 135
[9]   Large-Scale Fabrication of Rutile TiO2 with 3D Hierarchical Flower-Like Morphology [J].
Yao, Wenjun ;
Zhuang, Wei ;
Wang, Changsong ;
Shi, Ronghua ;
Lu, Xiaohua .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (12) :12991-12995
[10]   Large-scale fabrication of metallic Zn nanowires by thermal evaporation [J].
Khan, Aurangzeb ;
Kordesch, Martin E. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 33 (01) :88-91