Solid-state nanopore fabrication by automated controlled breakdown

被引:125
作者
Waugh, Matthew [1 ]
Briggs, Kyle [1 ]
Gunn, Dylan [1 ]
Gibeault, Mathieu [1 ]
King, Simon [1 ]
Ingram, Quinn [1 ]
Jimenez, Aura Melissa [1 ]
Berryman, Samuel [1 ]
Lomovtsev, Dmytro [1 ]
Andrzejewski, Lukasz [1 ]
Tabard-Cossa, Vincent [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SEQUENCE-SPECIFIC DETECTION; REAL-TIME; DNA; SHAPE; SIZE; TRANSPORT; SENSORS; ATOM;
D O I
10.1038/s41596-019-0255-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Solid-state nanopores are now well established as single-biomolecule sensors that hold great promise as sensing elements in diagnostic and sequencing applications. However, until recently this promise has been limited by the expensive, labor-intensive, and low-yield methods used to fabricate low-noise and precisely sized pores. To address this problem, we pioneered a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), which is rapidly becoming the method of choice for fabricating solid-state nanopores. Since its initial development, nanopore research groups around the world have applied and adapted the CBD method in a variety of ways, with varying levels of success. In this work, we present our accumulated knowledge of nanopore fabrication by CBD, including a detailed description of the instrumentation, software, and procedures required to reliably fabricate low-noise and precisely sized solid-state nanopores with a yield of >85% in less than 1 h. The assembly instructions for the various custom instruments can be found in the Supplementary Manual, and take approximately a day to complete, depending on the unit that the user is building and their level of skill with mechanical and electrical assembly. Unlike traditional beam-based nanopore fabrication technologies, the methods presented here are accessible to non-experts, lowering the cost of, and technical barriers to, fabricating nanoscale pores in thin solid-state membranes. This Protocol describes a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), for fabricating solid-state nanopores.
引用
收藏
页码:122 / 143
页数:22
相关论文
共 80 条
  • [51] A handheld platform for target protein detection and quantification using disposable nanopore strips
    Morin, Trevor J.
    McKenna, William L.
    Shropshire, Tyler D.
    Wride, Dustin A.
    Deschamps, Joshua D.
    Liu, Xu
    Stamm, Reto
    Wang, Hongyun
    Dunbar, William B.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [52] Nanopore-Based Target Sequence Detection
    Morin, Trevor J.
    Shropshire, Tyler
    Liu, Xu
    Briggs, Kyle
    Huynh, Cindy
    Tabard-Cossa, Vincent
    Wang, Hongyun
    Dunbar, William B.
    [J]. PLOS ONE, 2016, 11 (05):
  • [53] Discrimination among Protein Variants Using an Unfoldase-Coupled Nanopore
    Nivala, Jeff
    Mulroney, Logan
    Li, Gabriel
    Schreiber, Jacob
    Akeson, Mark
    [J]. ACS NANO, 2014, 8 (12) : 12365 - 12375
  • [54] Unfoldase-mediated protein translocation through an α-hemolysin nanopore
    Nivala, Jeff
    Marks, Douglas B.
    Akeson, Mark
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (03) : 247 - 250
  • [55] Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown
    Pud, Sergii
    Verschueren, Daniel
    Vukovic, Nikola
    Plesa, Calin
    Jonsson, Magnus P.
    Dekker, Cees
    [J]. NANO LETTERS, 2015, 15 (10) : 7112 - 7117
  • [56] Real-time, portable genome sequencing for Ebola surveillance
    Quick, Joshua
    Loman, Nicholas J.
    Duraffour, Sophie
    Simpson, Jared T.
    Severi, Ettore
    Cowley, Lauren
    Bore, Joseph Akoi
    Koundouno, Raymond
    Dudas, Gytis
    Mikhail, Amy
    Ouedraogo, Nobila
    Afrough, Babak
    Bah, Amadou
    Baum, Jonathan H. J.
    Becker-Ziaja, Beate
    Boettcher, Jan Peter
    Cabeza-Cabrerizo, Mar
    Camino-Sanchez, Alvaro
    Carter, Lisa L.
    Doerrbecker, Juliane
    Enkirch, Theresa
    Garcia-Dorival, Isabel
    Hetzelt, Nicole
    Hinzmann, Julia
    Holm, Tobias
    Kafetzopoulou, Liana Eleni
    Koropogui, Michel
    Kosgey, Abigael
    Kuisma, Eeva
    Logue, Christopher H.
    Mazzarelli, Antonio
    Meisel, Sarah
    Mertens, Marc
    Michel, Janine
    Ngabo, Didier
    Nitzsche, Katja
    Pallasch, Elisa
    Patrono, Livia Victoria
    Portmann, Jasmine
    Repits, Johanna Gabriella
    Rickett, Natasha Y.
    Sachse, Andreas
    Singethan, Katrin
    Vitoriano, Ines
    Emanaberhan, Rahel L. Y.
    Zekeng, Elsa G.
    Racine, Trina
    Bello, Alexander
    Sall, Amadou Alpha
    Faye, Ousmane
    [J]. NATURE, 2016, 530 (7589) : 228 - +
  • [57] Rodriguez-Larrea D, 2013, NAT NANOTECHNOL, V8, P288, DOI [10.1038/nnano.2013.22, 10.1038/NNANO.2013.22]
  • [58] Atom-by-atom nucleation and growth of graphene nanopores
    Russo, Christopher J.
    Golovchenko, J. A.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (16) : 5953 - 5957
  • [59] Nanopore Based Sequence Specific Detection of Duplex DNA for Genomic Profiling
    Singer, Alon
    Wanunu, Meni
    Morrison, Will
    Kuhn, Heiko
    Frank-Kamenetskii, Maxim
    Meller, Amit
    [J]. NANO LETTERS, 2010, 10 (02) : 738 - 742
  • [60] De novo sequencing and variant calling with nanopores using PoreSeq
    Szalay, Tamas
    Golovchenko, Jene A.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (10) : 1087 - +