Solid-state nanopore fabrication by automated controlled breakdown

被引:134
作者
Waugh, Matthew [1 ]
Briggs, Kyle [1 ]
Gunn, Dylan [1 ]
Gibeault, Mathieu [1 ]
King, Simon [1 ]
Ingram, Quinn [1 ]
Jimenez, Aura Melissa [1 ]
Berryman, Samuel [1 ]
Lomovtsev, Dmytro [1 ]
Andrzejewski, Lukasz [1 ]
Tabard-Cossa, Vincent [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SEQUENCE-SPECIFIC DETECTION; REAL-TIME; DNA; SHAPE; SIZE; TRANSPORT; SENSORS; ATOM;
D O I
10.1038/s41596-019-0255-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Solid-state nanopores are now well established as single-biomolecule sensors that hold great promise as sensing elements in diagnostic and sequencing applications. However, until recently this promise has been limited by the expensive, labor-intensive, and low-yield methods used to fabricate low-noise and precisely sized pores. To address this problem, we pioneered a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), which is rapidly becoming the method of choice for fabricating solid-state nanopores. Since its initial development, nanopore research groups around the world have applied and adapted the CBD method in a variety of ways, with varying levels of success. In this work, we present our accumulated knowledge of nanopore fabrication by CBD, including a detailed description of the instrumentation, software, and procedures required to reliably fabricate low-noise and precisely sized solid-state nanopores with a yield of >85% in less than 1 h. The assembly instructions for the various custom instruments can be found in the Supplementary Manual, and take approximately a day to complete, depending on the unit that the user is building and their level of skill with mechanical and electrical assembly. Unlike traditional beam-based nanopore fabrication technologies, the methods presented here are accessible to non-experts, lowering the cost of, and technical barriers to, fabricating nanoscale pores in thin solid-state membranes. This Protocol describes a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), for fabricating solid-state nanopores.
引用
收藏
页码:122 / 143
页数:22
相关论文
共 80 条
[51]   A handheld platform for target protein detection and quantification using disposable nanopore strips [J].
Morin, Trevor J. ;
McKenna, William L. ;
Shropshire, Tyler D. ;
Wride, Dustin A. ;
Deschamps, Joshua D. ;
Liu, Xu ;
Stamm, Reto ;
Wang, Hongyun ;
Dunbar, William B. .
SCIENTIFIC REPORTS, 2018, 8
[52]   Nanopore-Based Target Sequence Detection [J].
Morin, Trevor J. ;
Shropshire, Tyler ;
Liu, Xu ;
Briggs, Kyle ;
Huynh, Cindy ;
Tabard-Cossa, Vincent ;
Wang, Hongyun ;
Dunbar, William B. .
PLOS ONE, 2016, 11 (05)
[53]   Discrimination among Protein Variants Using an Unfoldase-Coupled Nanopore [J].
Nivala, Jeff ;
Mulroney, Logan ;
Li, Gabriel ;
Schreiber, Jacob ;
Akeson, Mark .
ACS NANO, 2014, 8 (12) :12365-12375
[54]   Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J].
Nivala, Jeff ;
Marks, Douglas B. ;
Akeson, Mark .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :247-250
[55]   Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown [J].
Pud, Sergii ;
Verschueren, Daniel ;
Vukovic, Nikola ;
Plesa, Calin ;
Jonsson, Magnus P. ;
Dekker, Cees .
NANO LETTERS, 2015, 15 (10) :7112-7117
[56]   Real-time, portable genome sequencing for Ebola surveillance [J].
Quick, Joshua ;
Loman, Nicholas J. ;
Duraffour, Sophie ;
Simpson, Jared T. ;
Severi, Ettore ;
Cowley, Lauren ;
Bore, Joseph Akoi ;
Koundouno, Raymond ;
Dudas, Gytis ;
Mikhail, Amy ;
Ouedraogo, Nobila ;
Afrough, Babak ;
Bah, Amadou ;
Baum, Jonathan H. J. ;
Becker-Ziaja, Beate ;
Boettcher, Jan Peter ;
Cabeza-Cabrerizo, Mar ;
Camino-Sanchez, Alvaro ;
Carter, Lisa L. ;
Doerrbecker, Juliane ;
Enkirch, Theresa ;
Garcia-Dorival, Isabel ;
Hetzelt, Nicole ;
Hinzmann, Julia ;
Holm, Tobias ;
Kafetzopoulou, Liana Eleni ;
Koropogui, Michel ;
Kosgey, Abigael ;
Kuisma, Eeva ;
Logue, Christopher H. ;
Mazzarelli, Antonio ;
Meisel, Sarah ;
Mertens, Marc ;
Michel, Janine ;
Ngabo, Didier ;
Nitzsche, Katja ;
Pallasch, Elisa ;
Patrono, Livia Victoria ;
Portmann, Jasmine ;
Repits, Johanna Gabriella ;
Rickett, Natasha Y. ;
Sachse, Andreas ;
Singethan, Katrin ;
Vitoriano, Ines ;
Emanaberhan, Rahel L. Y. ;
Zekeng, Elsa G. ;
Racine, Trina ;
Bello, Alexander ;
Sall, Amadou Alpha ;
Faye, Ousmane .
NATURE, 2016, 530 (7589) :228-+
[57]  
Rodriguez-Larrea D, 2013, NAT NANOTECHNOL, V8, P288, DOI [10.1038/nnano.2013.22, 10.1038/NNANO.2013.22]
[58]   Atom-by-atom nucleation and growth of graphene nanopores [J].
Russo, Christopher J. ;
Golovchenko, J. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (16) :5953-5957
[59]   Nanopore Based Sequence Specific Detection of Duplex DNA for Genomic Profiling [J].
Singer, Alon ;
Wanunu, Meni ;
Morrison, Will ;
Kuhn, Heiko ;
Frank-Kamenetskii, Maxim ;
Meller, Amit .
NANO LETTERS, 2010, 10 (02) :738-742
[60]   De novo sequencing and variant calling with nanopores using PoreSeq [J].
Szalay, Tamas ;
Golovchenko, Jene A. .
NATURE BIOTECHNOLOGY, 2015, 33 (10) :1087-+