Solid-state nanopore fabrication by automated controlled breakdown

被引:134
作者
Waugh, Matthew [1 ]
Briggs, Kyle [1 ]
Gunn, Dylan [1 ]
Gibeault, Mathieu [1 ]
King, Simon [1 ]
Ingram, Quinn [1 ]
Jimenez, Aura Melissa [1 ]
Berryman, Samuel [1 ]
Lomovtsev, Dmytro [1 ]
Andrzejewski, Lukasz [1 ]
Tabard-Cossa, Vincent [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SEQUENCE-SPECIFIC DETECTION; REAL-TIME; DNA; SHAPE; SIZE; TRANSPORT; SENSORS; ATOM;
D O I
10.1038/s41596-019-0255-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Solid-state nanopores are now well established as single-biomolecule sensors that hold great promise as sensing elements in diagnostic and sequencing applications. However, until recently this promise has been limited by the expensive, labor-intensive, and low-yield methods used to fabricate low-noise and precisely sized pores. To address this problem, we pioneered a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), which is rapidly becoming the method of choice for fabricating solid-state nanopores. Since its initial development, nanopore research groups around the world have applied and adapted the CBD method in a variety of ways, with varying levels of success. In this work, we present our accumulated knowledge of nanopore fabrication by CBD, including a detailed description of the instrumentation, software, and procedures required to reliably fabricate low-noise and precisely sized solid-state nanopores with a yield of >85% in less than 1 h. The assembly instructions for the various custom instruments can be found in the Supplementary Manual, and take approximately a day to complete, depending on the unit that the user is building and their level of skill with mechanical and electrical assembly. Unlike traditional beam-based nanopore fabrication technologies, the methods presented here are accessible to non-experts, lowering the cost of, and technical barriers to, fabricating nanoscale pores in thin solid-state membranes. This Protocol describes a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), for fabricating solid-state nanopores.
引用
收藏
页码:122 / 143
页数:22
相关论文
共 80 条
[1]   The T2K experiment [J].
Abe, K. ;
Abgrall, N. ;
Aihara, H. ;
Ajima, Y. ;
Albert, J. B. ;
Allan, D. ;
Amaudruz, P-A ;
Andreopoulos, C. ;
Andrieu, B. ;
Anerella, M. D. ;
Angelsen, C. ;
Aoki, S. ;
Araoka, O. ;
Argyriades, J. ;
Ariga, A. ;
Ariga, T. ;
Assylbekov, S. ;
de Andre, J. P. A. M. ;
Autiero, D. ;
Badertscher, A. ;
Ballester, O. ;
Barbi, M. ;
Barker, G. J. ;
Baron, P. ;
Barr, G. ;
Bartoszek, L. ;
Batkiewicz, M. ;
Bay, F. ;
Bentham, S. ;
Berardi, V. ;
Berger, B. E. ;
Berns, H. ;
Bertram, I. ;
Besnier, M. ;
Beucher, J. ;
Beznosko, D. ;
Bhadra, S. ;
Birney, P. ;
Bishop, D. ;
Blackmore, E. ;
Blaszczyk, F. D. M. ;
Blocki, J. ;
Blondel, A. ;
Bodek, A. ;
Bojechko, C. ;
Bouchez, J. ;
Boussuge, T. ;
Boyd, S. B. ;
Boyer, M. ;
Braam, H. N. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 659 (01) :106-135
[2]   Picomolar Fingerprinting of Nucleic Acid Nanoparticles Using Solid-State Nanopores [J].
Alibakhshi, Mohammad Amin ;
Halman, Justin R. ;
Wilson, James ;
Aksimentiev, Aleksei ;
Afonin, Kirill. A. ;
Wanunu, Meni .
ACS NANO, 2017, 11 (10) :9701-9710
[3]   In Situ Nanopore Fabrication and Single-Molecule Sensing with Microscale Liquid Contacts [J].
Arcadia, Christopher E. ;
Reyes, Carlos C. ;
Rosenstein, Jacob K. .
ACS NANO, 2017, 11 (05) :4907-4915
[4]   DNA sequencing and bar-coding using solid-state nanopores [J].
Atas, Evrim ;
Singer, Alon ;
Meller, Amit .
ELECTROPHORESIS, 2012, 33 (23) :3437-3447
[5]   Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter [J].
Bandara, Y. M. Nuwan D. Y. ;
Karawdeniya, Buddini I. ;
Dwyer, Jason R. .
ACS OMEGA, 2019, 4 (01) :226-230
[6]   SINGLE-MOLECULE DNA SEQUENCING Getting to the bottom of the well [J].
Bayley, Hagan .
NATURE NANOTECHNOLOGY, 2017, 12 (12) :1116-1117
[7]   Nanopore Sequencing: From Imagination to Reality [J].
Bayley, Hagan .
CLINICAL CHEMISTRY, 2015, 61 (01) :25-31
[8]   Identifying Structure in Short DNA Scaffolds Using Solid-State Nanopores [J].
Beamish, Eric ;
Tabard-Cossa, Vincent ;
Godin, Michel .
ACS SENSORS, 2017, 2 (12) :1814-1820
[9]   Precise control of the size and noise of solid-state nanopores using high electric fields [J].
Beamish, Eric ;
Kwok, Harold ;
Tabard-Cossa, Vincent ;
Godin, Michel .
NANOTECHNOLOGY, 2012, 23 (40)
[10]   Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore [J].
Bell, Nicholas A. W. ;
Chen, Kaikai ;
Ghosal, Sandip ;
Ricci, Maria ;
Keyser, Ulrich F. .
NATURE COMMUNICATIONS, 2017, 8