Solid-state nanopore fabrication by automated controlled breakdown

被引:125
作者
Waugh, Matthew [1 ]
Briggs, Kyle [1 ]
Gunn, Dylan [1 ]
Gibeault, Mathieu [1 ]
King, Simon [1 ]
Ingram, Quinn [1 ]
Jimenez, Aura Melissa [1 ]
Berryman, Samuel [1 ]
Lomovtsev, Dmytro [1 ]
Andrzejewski, Lukasz [1 ]
Tabard-Cossa, Vincent [1 ]
机构
[1] Univ Ottawa, Dept Phys, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SEQUENCE-SPECIFIC DETECTION; REAL-TIME; DNA; SHAPE; SIZE; TRANSPORT; SENSORS; ATOM;
D O I
10.1038/s41596-019-0255-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Solid-state nanopores are now well established as single-biomolecule sensors that hold great promise as sensing elements in diagnostic and sequencing applications. However, until recently this promise has been limited by the expensive, labor-intensive, and low-yield methods used to fabricate low-noise and precisely sized pores. To address this problem, we pioneered a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), which is rapidly becoming the method of choice for fabricating solid-state nanopores. Since its initial development, nanopore research groups around the world have applied and adapted the CBD method in a variety of ways, with varying levels of success. In this work, we present our accumulated knowledge of nanopore fabrication by CBD, including a detailed description of the instrumentation, software, and procedures required to reliably fabricate low-noise and precisely sized solid-state nanopores with a yield of >85% in less than 1 h. The assembly instructions for the various custom instruments can be found in the Supplementary Manual, and take approximately a day to complete, depending on the unit that the user is building and their level of skill with mechanical and electrical assembly. Unlike traditional beam-based nanopore fabrication technologies, the methods presented here are accessible to non-experts, lowering the cost of, and technical barriers to, fabricating nanoscale pores in thin solid-state membranes. This Protocol describes a low-cost and scalable solid-state nanopore fabrication method, termed controlled breakdown (CBD), for fabricating solid-state nanopores.
引用
收藏
页码:122 / 143
页数:22
相关论文
共 80 条
  • [1] The T2K experiment
    Abe, K.
    Abgrall, N.
    Aihara, H.
    Ajima, Y.
    Albert, J. B.
    Allan, D.
    Amaudruz, P-A
    Andreopoulos, C.
    Andrieu, B.
    Anerella, M. D.
    Angelsen, C.
    Aoki, S.
    Araoka, O.
    Argyriades, J.
    Ariga, A.
    Ariga, T.
    Assylbekov, S.
    de Andre, J. P. A. M.
    Autiero, D.
    Badertscher, A.
    Ballester, O.
    Barbi, M.
    Barker, G. J.
    Baron, P.
    Barr, G.
    Bartoszek, L.
    Batkiewicz, M.
    Bay, F.
    Bentham, S.
    Berardi, V.
    Berger, B. E.
    Berns, H.
    Bertram, I.
    Besnier, M.
    Beucher, J.
    Beznosko, D.
    Bhadra, S.
    Birney, P.
    Bishop, D.
    Blackmore, E.
    Blaszczyk, F. D. M.
    Blocki, J.
    Blondel, A.
    Bodek, A.
    Bojechko, C.
    Bouchez, J.
    Boussuge, T.
    Boyd, S. B.
    Boyer, M.
    Braam, H. N.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 659 (01) : 106 - 135
  • [2] Picomolar Fingerprinting of Nucleic Acid Nanoparticles Using Solid-State Nanopores
    Alibakhshi, Mohammad Amin
    Halman, Justin R.
    Wilson, James
    Aksimentiev, Aleksei
    Afonin, Kirill. A.
    Wanunu, Meni
    [J]. ACS NANO, 2017, 11 (10) : 9701 - 9710
  • [3] In Situ Nanopore Fabrication and Single-Molecule Sensing with Microscale Liquid Contacts
    Arcadia, Christopher E.
    Reyes, Carlos C.
    Rosenstein, Jacob K.
    [J]. ACS NANO, 2017, 11 (05) : 4907 - 4915
  • [4] DNA sequencing and bar-coding using solid-state nanopores
    Atas, Evrim
    Singer, Alon
    Meller, Amit
    [J]. ELECTROPHORESIS, 2012, 33 (23) : 3437 - 3447
  • [5] Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter
    Bandara, Y. M. Nuwan D. Y.
    Karawdeniya, Buddini I.
    Dwyer, Jason R.
    [J]. ACS OMEGA, 2019, 4 (01): : 226 - 230
  • [6] SINGLE-MOLECULE DNA SEQUENCING Getting to the bottom of the well
    Bayley, Hagan
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (12) : 1116 - 1117
  • [7] Nanopore Sequencing: From Imagination to Reality
    Bayley, Hagan
    [J]. CLINICAL CHEMISTRY, 2015, 61 (01) : 25 - 31
  • [8] Identifying Structure in Short DNA Scaffolds Using Solid-State Nanopores
    Beamish, Eric
    Tabard-Cossa, Vincent
    Godin, Michel
    [J]. ACS SENSORS, 2017, 2 (12): : 1814 - 1820
  • [9] Precise control of the size and noise of solid-state nanopores using high electric fields
    Beamish, Eric
    Kwok, Harold
    Tabard-Cossa, Vincent
    Godin, Michel
    [J]. NANOTECHNOLOGY, 2012, 23 (40)
  • [10] Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore
    Bell, Nicholas A. W.
    Chen, Kaikai
    Ghosal, Sandip
    Ricci, Maria
    Keyser, Ulrich F.
    [J]. NATURE COMMUNICATIONS, 2017, 8