Sum uncertainty relations based on Wigner-Yanase skew information

被引:36
作者
Chen, Bin [1 ,2 ,3 ]
Fei, Shao-Ming [4 ,5 ]
Long, Gui-Lu [1 ,2 ,3 ,6 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[5] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty relation; Wigner-Yanase skew information; Noncommuting observables; PRINCIPLE;
D O I
10.1007/s11128-016-1274-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study sum uncertainty relations for arbitrary finite N quantum mechanical observables. Some uncertainty inequalities are presented by using skew information introduced by Wigner and Yanase. These uncertainty inequalities are nontrivial as long as the observables are mutually noncommutative. The relations among these new and existing uncertainty inequalities have been investigated. Detailed examples are presented.
引用
收藏
页码:2639 / 2648
页数:10
相关论文
共 34 条
[21]  
Narasimhachar V., ARXIV150502223
[22]   Sum uncertainty relation in quantum theory [J].
Pati, A. K. ;
Sahu, P. K. .
PHYSICS LETTERS A, 2007, 367 (03) :177-181
[23]   Majorization entropic uncertainty relations [J].
Puchala, Zbigniew ;
Rudnicki, Lukasz ;
Zyczkowski, Karol .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
[24]   Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies [J].
Rastegin, Alexey E. .
EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (12)
[25]   The uncertainty principle [J].
Robertson, HP .
PHYSICAL REVIEW, 1929, 34 (01) :163-164
[26]   Majorization approach to entropic uncertainty relations for coarse-grained observables [J].
Rudnicki, Lukasz .
PHYSICAL REVIEW A, 2015, 91 (03)
[27]   Strong majorization entropic uncertainty relations [J].
Rudnicki, Lukasz ;
Puchala, Zbigniew ;
Zyczkowski, Karol .
PHYSICAL REVIEW A, 2014, 89 (05)
[28]   Maximal and total skew information of three-qubit system obtained using nonlinear interaction models [J].
Sun Hong-Gui ;
Zhang Li-Hua ;
Liu Wan-Fang ;
Li Chun-Jie .
CHINESE PHYSICS B, 2012, 21 (01)
[29]   Maximal and total skew information for a two-qubit system using nonlinear interaction models [J].
Sun Hong-Gui ;
Liu Wan-Fang ;
Li Chun-Jie .
CHINESE PHYSICS B, 2011, 20 (09)
[30]   Entropic uncertainty relations-a survey [J].
Wehner, Stephanie ;
Winter, Andreas .
NEW JOURNAL OF PHYSICS, 2010, 12