Sum uncertainty relations based on Wigner-Yanase skew information

被引:36
作者
Chen, Bin [1 ,2 ,3 ]
Fei, Shao-Ming [4 ,5 ]
Long, Gui-Lu [1 ,2 ,3 ,6 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[5] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty relation; Wigner-Yanase skew information; Noncommuting observables; PRINCIPLE;
D O I
10.1007/s11128-016-1274-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study sum uncertainty relations for arbitrary finite N quantum mechanical observables. Some uncertainty inequalities are presented by using skew information introduced by Wigner and Yanase. These uncertainty inequalities are nontrivial as long as the observables are mutually noncommutative. The relations among these new and existing uncertainty inequalities have been investigated. Detailed examples are presented.
引用
收藏
页码:2639 / 2648
页数:10
相关论文
共 34 条
[1]  
[Anonymous], 2013, Matrix Analysis
[2]  
Bialynicki-Birula I., 2011, STAT COMPLEXITY APPL, P1, DOI [10.1007/978-90-481-3890-6_1, DOI 10.1007/978-90-481-3890-6_1]
[3]   Sum uncertainty relations for arbitrary N incompatible observables [J].
Chen, Bin ;
Fei, Shao-Ming .
SCIENTIFIC REPORTS, 2015, 5
[4]   Uncertainty relations based on mutually unbiased measurements [J].
Chen, Bin ;
Fei, Shao-Ming .
QUANTUM INFORMATION PROCESSING, 2015, 14 (06) :2227-2238
[5]   UNCERTAINTY IN QUANTUM MEASUREMENTS [J].
DEUTSCH, D .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :631-633
[6]   Universal Uncertainty Relations [J].
Friedland, Shmuel ;
Gheorghiu, Vlad ;
Gour, Gilad .
PHYSICAL REVIEW LETTERS, 2013, 111 (23)
[7]   Schrodinger uncertainty relation with Wigner-Yanase skew information [J].
Furuichi, Shigeru .
PHYSICAL REVIEW A, 2010, 82 (03)
[8]   Observable Measure of Quantum Coherence in Finite Dimensional Systems [J].
Girolami, Davide .
PHYSICAL REVIEW LETTERS, 2014, 113 (17)
[9]   Characterizing Nonclassical Correlations via Local Quantum Uncertainty [J].
Girolami, Davide ;
Tufarelli, Tommaso ;
Adesso, Gerardo .
PHYSICAL REVIEW LETTERS, 2013, 110 (24)
[10]  
Heisenberg W., 1927, Z. Phys, V43, P172, DOI [DOI 10.1007/BF01397280, 10.1007/BF01397280]