Oxygen Vacancy-Mediated Selective C-N Coupling toward Electrocatalytic Urea Synthesis

被引:288
作者
Wei, Xiaoxiao [1 ,2 ]
Wen, Xiaojian [2 ]
Liu, Yingying [1 ]
Chen, Chen [1 ]
Xie, Chao [1 ]
Wang, Dongdong [1 ]
Qiu, Mengyi [1 ]
He, Nihan [1 ]
Zhou, Peng [1 ,2 ]
Chen, Wei [1 ]
Cheng, Jun [3 ]
Lin, Hongzhen [4 ]
Jia, Jianfeng [5 ]
Fu, Xian-Zhu [2 ]
Wang, Shuangyin [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Adv Catalyt Engn Res Ctr, Minist Educ,State Key Lab Chemo Biosensing & Chem, Changsha 410082, Hunan, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Coll Phys & Optoelect Engn, Shenzhen 518000, Guangdong, Peoples R China
[3] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, iChEM, Xiamen 361000, Fujian, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion SINANO, I Lab, Suzhou 215000, Jiangsu, Peoples R China
[5] Shanxi Normal Univ, Sch Chem & Mat Sci, Minist Educ, Key Lab Magnet Mol & Magnet Informat Mat, Taiyuan 030031, Shanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
NITRATE REDUCTION; ELECTRON-TRANSFER; HABER-BOSCH; WATER; NITROGEN; AMMONIA; CERIA; CO2; SPECTROSCOPY; CHEMISTRY;
D O I
10.1021/jacs.2c03452
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic C-N coupling for one-step urea synthesis under ambient conditions serves as the promising alternative to the traditional urea synthetic protocol. However, the hydrogenation of intermediate species hinders the efficient urea synthesis. Herein, the oxygen vacancy-enriched CeO2 was demonstrated as the efficient electrocatalyst with the stabilization of the crucial intermediate of *NO via inserting into vacant sites, which is conducive to the subsequent C-N coupling process rather than protonation, whereas the poor selectivity of C-N coupling with protonation was observed on the vacancy-deficient catalyst. The oxygen vacancy-mediated selective C-N coupling was distinguished and validated by the in situ sum frequency generation spectroscopy. The introduction of oxygen vacancies tailors the common catalyst carrier into an efficient electrocatalyst with a high urea yield rate of 943.6 mg h(-1) g(-1), superior than that of partial noble-metal-based electrocatalysts. This work provides novel insights into the catalyst design and developments of coupling systems.
引用
收藏
页码:11530 / 11535
页数:6
相关论文
共 47 条
  • [1] Electrocatalytic C-N Coupling for Urea Synthesis
    Chen, Chen
    He, Nihan
    Wang, Shuangyin
    [J]. SMALL SCIENCE, 2021, 1 (11):
  • [2] Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions
    Chen, Chen
    Zhu, Xiaorong
    Wen, Xiaojian
    Zhou, Yangyang
    Zhou, Ling
    Li, Hao
    Tao, Li
    Li, Qiling
    Du, Shiqian
    Liu, Tingting
    Yan, Dafeng
    Xie, Chao
    Zou, Yuqin
    Wang, Yanyong
    Chen, Ru
    Huo, Jia
    Li, Yafei
    Cheng, Jun
    Su, Hui
    Zhao, Xu
    Cheng, Weiren
    Liu, Qinghua
    Lin, Hongzhen
    Luo, Jun
    Chen, Jun
    Dong, Mingdong
    Cheng, Kai
    Li, Conggang
    Wang, Shuangyin
    [J]. NATURE CHEMISTRY, 2020, 12 (08) : 717 - 724
  • [3] Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst
    Chen, Gao-Feng
    Yuan, Yifei
    Jiang, Haifeng
    Ren, Shi-Yu
    Ding, Liang-Xin
    Ma, Lu
    Wu, Tianpin
    Lu, Jun
    Wang, Haihui
    [J]. NATURE ENERGY, 2020, 5 (08) : 605 - 613
  • [4] Beyond fossil fuel-driven nitrogen transformations
    Chen, Jingguang G.
    Crooks, Richard M.
    Seefeldt, Lance C.
    Bren, Kara L.
    Bullock, R. Morris
    Darensbourg, Marcetta Y.
    Holland, Patrick L.
    Hoffman, Brian
    Janik, Michael J.
    Jones, Anne K.
    Kanatzidis, Mercouri G.
    King, Paul
    Lancaster, Kyle M.
    Lymar, Sergei V.
    Pfromm, Peter
    Schneider, William F.
    Schrock, Richard R.
    [J]. SCIENCE, 2018, 360 (6391)
  • [5] Nitrate reduction in water: Influence of the addition of a second metal on the performances of the Pd/CeO2 catalyst
    Devadas, Abirami
    Vasudevan, Subramanyan
    Epron, Florence
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2011, 185 (2-3) : 1412 - 1417
  • [6] Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis
    Du, Lei
    Xing, Lixin
    Zhang, Gaixia
    Liu, Xianhu
    Rawach, Diane
    Sun, Shuhui
    [J]. SUSMAT, 2021, 1 (02): : 150 - 173
  • [7] Diversion of Catalytic C-N Bond Formation to Catalytic Oxidation of NH3 through Modification of the Hydrogen Atom Abstractor
    Dunn, Peter L.
    Johnson, Samantha I.
    Kaminsky, Werner
    Bullock, R. Morris
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (07) : 3361 - 3365
  • [8] Catalytic reduction of nitrate in water on a monometallic Pd/CeO2 catalyst
    Epron, F
    Gauthard, F
    Barbier, J
    [J]. JOURNAL OF CATALYSIS, 2002, 206 (02) : 363 - 367
  • [9] How a century of ammonia synthesis changed the world
    Erisman, Jan Willem
    Sutton, Mark A.
    Galloway, James
    Klimont, Zbigniew
    Winiwarter, Wilfried
    [J]. NATURE GEOSCIENCE, 2008, 1 (10) : 636 - 639
  • [10] Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction
    Feng, Yonggang
    Yang, Hao
    Zhang, Ying
    Huang, Xiaoqing
    Li, Leigang
    Cheng, Tao
    Shao, Qi
    [J]. NANO LETTERS, 2020, 20 (11) : 8282 - 8289