Using deep learning to identify the recurrent laryngeal nerve during thyroidectomy

被引:17
作者
Gong, Julia [1 ]
Holsinger, F. Christopher [2 ]
Noel, Julia E. [2 ]
Mitani, Sohei [2 ,3 ]
Jopling, Jeff [4 ]
Bedi, Nikita [2 ]
Koh, Yoon Woo [5 ]
Orloff, Lisa A. [2 ]
Cernea, Claudio R. [6 ]
Yeung, Serena [1 ,7 ,8 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Otolaryngol, Div Head & Neck Surg, 875 Blake Wilbur Dr, Stanford, CA 94305 USA
[3] Ehime Univ, Dept Otolaryngol Head & Neck Surg, Grad Sch Med, Toon, Ehime, Japan
[4] Stanford Univ, Dept Surg, Stanford, CA USA
[5] Yonsei Univ, Sch Med, Dept Head & Neck Surg, Seoul, South Korea
[6] Univ Sao Paulo, Dept Surg, Med Sch, Sao Paulo, Brazil
[7] Stanford Univ, Dept Biomed Data Sci, 350 Jane Stanford Way, Stanford, CA 94305 USA
[8] Stanford Univ, Sch Med, Clin Excellence Res Ctr, Stanford, CA 94305 USA
关键词
INSTRUMENT SEGMENTATION; ROBOTIC SURGERY; VOLUME; RECOGNITION;
D O I
10.1038/s41598-021-93202-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Surgeons must visually distinguish soft-tissues, such as nerves, from surrounding anatomy to prevent complications and optimize patient outcomes. An accurate nerve segmentation and analysis tool could provide useful insight for surgical decision-making. Here, we present an end-to-end, automatic deep learning computer vision algorithm to segment and measure nerves. Unlike traditional medical imaging, our unconstrained setup with accessible handheld digital cameras, along with the unstructured open surgery scene, makes this task uniquely challenging. We investigate one common procedure, thyroidectomy, during which surgeons must avoid damaging the recurrent laryngeal nerve (RLN), which is responsible for human speech. We evaluate our segmentation algorithm on a diverse dataset across varied and challenging settings of operating room image capture, and show strong segmentation performance in the optimal image capture condition. This work lays the foundation for future research in real-time tissue discrimination and integration of accessible, intelligent tools into open surgery to provide actionable insights.
引用
收藏
页数:11
相关论文
共 59 条
  • [1] Association of Surgeon Volume With Outcomes and Cost Savings Following Thyroidectomy A National Forecast
    Al-Qurayshi, Zaid
    Robins, Russell
    Hauch, Adam
    Randolph, Gregory W.
    Kandil, Emad
    [J]. JAMA OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2016, 142 (01) : 32 - 39
  • [2] A new human heart vessel identification, segmentation and 3D reconstruction mechanism
    Al-Surmi, Aqeel
    Wirza, Rahmita
    Mahmod, Ramlan
    Khalid, Fatimah
    Dimon, Mohd Zamrin
    [J]. JOURNAL OF CARDIOTHORACIC SURGERY, 2014, 9
  • [3] Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy ?
    Ali, Sharib
    Dmitrieva, Mariia
    Ghatwary, Noha
    Bano, Sophia
    Polat, Gorkem
    Temizel, Alptekin
    Krenzer, Adrian
    Hekalo, Amar
    Guo, Yun Bo
    Matuszewski, Bogdan
    Gridach, Mourad
    Voiculescu, Irina
    Yoganand, Vishnusai
    Chavan, Arnav
    Raj, Aryan
    Nguyen, Nhan T.
    Tran, Dat Q.
    Huynh, Le Duy
    Boutry, Nicolas
    Rezvy, Shahadate
    Chen, Haijian
    Choi, Yoon Ho
    Subramanian, Anand
    Balasubramanian, Velmurugan
    Gao, Xiaohong W.
    Hu, Hongyu
    Liao, Yusheng
    Stoyanov, Danail
    Daul, Christian
    Realdon, Stefano
    Cannizzaro, Renato
    Lamarque, Dominique
    Tran-Nguyen, Terry
    Bailey, Adam
    Braden, Barbara
    East, James E.
    Rittscher, Jens
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 70 (70)
  • [4] An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy
    Ali, Sharib
    Zhou, Felix
    Braden, Barbara
    Bailey, Adam
    Yang, Suhui
    Cheng, Guanju
    Zhang, Pengyi
    Li, Xiaoqiong
    Kayser, Maxime
    Soberanis-Mukul, Roger D.
    Albarqouni, Shadi
    Wang, Xiaokang
    Wang, Chunqing
    Watanabe, Seiryo
    Oksuz, Ilkay
    Ning, Qingtian
    Yang, Shufan
    Khan, Mohammad Azam
    Gao, Xiaohong W.
    Realdon, Stefano
    Loshchenov, Maxim
    Schnabel, Julia A.
    East, James E.
    Wagnieres, Georges
    Loschenov, Victor B.
    Grisan, Enrico
    Daul, Christian
    Blondel, Walter
    Rittscher, Jens
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Allan M., 2020, 2018 robotic scene segmentation challenge
  • [6] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [7] HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
    Borgli, Hanna
    Thambawita, Vajira
    Smedsrud, Pia H.
    Hicks, Steven
    Jha, Debesh
    Eskeland, Sigrun L.
    Randel, Kristin Ranheim
    Pogorelov, Konstantin
    Lux, Mathias
    Nguyen, Duc Tien Dang
    Johansen, Dag
    Griwodz, Carsten
    Stensland, Hakon K.
    Garcia-Ceja, Enrique
    Schmidt, Peter T.
    Hammer, Hugo L.
    Riegler, Michael A.
    Halvorsen, Pal
    de Lange, Thomas
    [J]. SCIENTIFIC DATA, 2020, 7 (01)
  • [8] Recurrent Laryngeal Nerve A Plexus Rather Than a Nerve?
    Cernea, Claudio R.
    Hojaij, Flavio C.
    De Carlucci, Dorival, Jr.
    Gotoda, Renato
    Plopper, Caio
    Vanderlei, Felipe
    Brandao, Lenine G.
    [J]. ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY, 2009, 135 (11) : 1098 - 1102
  • [9] Choi B, 2017, IEEE ENG MED BIO, P1756, DOI 10.1109/EMBC.2017.8037183
  • [10] Generalized overlap measures for evaluation and validation in medical image analysis
    Crum, William R.
    Camara, Oscar
    Hill, Derek L. G.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) : 1451 - 1461