Some statistics on Stirling permutations and Stirling derangements

被引:4
作者
Duh, Guan-Huei [1 ]
Lin, Yen-Chi Roger [2 ]
Ma, Shi-Mei [3 ]
Yeh, Yeong-Nan [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei, Taiwan
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 116, Taiwan
[3] Northeastern Univ Qinhuangdao, Sch Math & Stat, Qinhuangdao 066004, Hebei, Peoples R China
关键词
Stirling permutations; Marked permutations; Stirling derangements; Increasing trees; POLYNOMIALS;
D O I
10.1016/j.disc.2018.05.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A permutation of the multiset {1, 1, 2, 2,..., n, n} is called a Stirling permutation of order n if every entry between the two occurrences of i is greater than i for each i is an element of {1, 2,..., n}. In this paper, we introduce the definitions of block, even indexed entry, odd indexed entry, Stirling derangement, marked permutation and bicolored increasing binary tree. We first study the joint distribution of ascent plateaux, even indexed entries and left-to-right minima over the set of Stirling permutations of order n. We then present an involution on Stirling derangements. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:2478 / 2484
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 2010, The on-line encyclopedia of integer sequences
[2]   REAL ZEROS AND NORMAL DISTRIBUTION FOR STATISTICS ON STIRLING PERMUTATIONS DEFINED BY GESSEL AND STANLEY [J].
Bona, Miklos .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) :401-406
[3]   A class of q-symmetric functions arising from plethysm [J].
Brenti, F .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :137-170
[4]   Context-free grammars for permutations and increasing trees [J].
Chen, William Y. C. ;
Fu, Amy M. .
ADVANCES IN APPLIED MATHEMATICS, 2017, 82 :58-82
[5]   Stirling permutations on multisets [J].
Dzhumadil'daev, Askar ;
Yeliussizov, Damir .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 :377-392
[6]  
Foata D., 1970, LECT NOTES MATH, V138
[7]   STIRLING POLYNOMIALS [J].
GESSEL, I ;
STANLEY, RP .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (01) :24-33
[8]   Stable multivariate Eulerian polynomials and generalized Stirling permutations [J].
Haglund, J. ;
Visontai, Mirko .
EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (04) :477-487
[9]   Generalized Stirling permutations, families of increasing trees and urn models [J].
Janson, Svante ;
Kuba, Markus ;
Panholzer, Alois .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (01) :94-114
[10]  
Ma S.-M., 2015, ELECT J COMBIN, V22