Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots

被引:44
作者
Fiore, A [1 ]
Rossetti, M
Alloing, B
Paranthoen, C
Chen, JX
Geelhaar, L
Riechert, H
机构
[1] Ecole Polytech Fed Lausanne, Inst Photon & Quantum Elect, CH-1015 Lausanne, Switzerland
[2] Infineon Technol, Corp Res Photon, D-81730 Munich, Germany
[3] CNR, IFN, Inst Photon & Nanotechnol, I-00156 Rome, Italy
来源
PHYSICAL REVIEW B | 2004年 / 70卷 / 20期
关键词
D O I
10.1103/PhysRevB.70.205311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we introduce a method based on the measurement of the current-voltage and light-current characteristics in light-emitting diodes where current is injected in an area <1 mum(2). By analyzing the scaling behavior of devices with different sizes, we deduce the effective active area, and thus the diffusion length. A strong reduction in the diffusion length is observed going from QWs (L(d)approximate to2.7 mum) to QDs (L-d<100 nm), DQWs being an intermediate case (L(diff)approximate to0-200 nm depending on the carrier density). These results show that lateral composition fluctuations, either intended or unintended, produce strong carrier localization and significantly affect the carrier profile in a device even at room temperature.
引用
收藏
页码:205311 / 1
页数:12
相关论文
共 41 条
  • [1] Effect of annealing on the In and N distribution in InGaAsN quantum wells
    Albrecht, M
    Grillo, V
    Remmele, T
    Strunk, HP
    Egorov, AY
    Dumitras, G
    Riechert, H
    Kaschner, A
    Heitz, R
    Hoffmann, A
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (15) : 2719 - 2721
  • [2] [Anonymous], 1985, SEMICONDUCTOR PHYS
  • [3] Continuous room-temperature operation of electrically pumped quantum-dot microcylinder lasers
    Arzberger, M
    Böhm, G
    Amann, MC
    Abstreiter, G
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (12) : 1766 - 1768
  • [4] Method of source terms for dipole emission modification in modes of arbitrary planar structures
    Benisty, H
    Stanley, R
    Mayer, M
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05) : 1192 - 1201
  • [5] A comparative study of spontaneous emission and carrier recombination processes in InGaAs quantum dots and GaInNAs quantum wells emitting near 1300 nm
    Bennett, AJ
    Stavrinou, PN
    Roberts, C
    Murray, R
    Parry, G
    Roberts, JS
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (10) : 6215 - 6218
  • [6] Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy
    Buyanova, IA
    Pozina, G
    Hai, PN
    Thinh, NQ
    Bergman, JP
    Chen, WM
    Xin, HP
    Tu, CW
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (15) : 2325 - 2327
  • [7] Scaling quantum-dot light-emitting diodes to submicrometer sizes
    Fiore, A
    Chen, JX
    Ilegems, M
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (10) : 1756 - 1758
  • [8] Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm
    Fiore, A
    Borri, P
    Langbein, W
    Hvam, JM
    Oesterle, U
    Houdré, R
    Stanley, RP
    Ilegems, M
    [J]. APPLIED PHYSICS LETTERS, 2000, 76 (23) : 3430 - 3432
  • [9] High-efficiency light-emitting diodes at ≈1.3 μm using InAs-InGaAs quantum dots
    Fiore, A
    Oesterle, U
    Stanley, RP
    Ilegems, M
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (12) : 1601 - 1603
  • [10] Electron conduction in two-dimensional GaAs1-yNy channels -: art. no. 153305
    Fowler, D
    Makarovsky, O
    Patanè, A
    Eaves, L
    Geelhaar, L
    Riechert, H
    [J]. PHYSICAL REVIEW B, 2004, 69 (15) : 153305 - 1