A transference theorem for the Dunkl transform and its applications

被引:31
作者
Dai, Feng [1 ]
Wang, Heping [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
基金
加拿大自然科学与工程研究理事会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Hormander type multiplier theorem; Dunkl transform; Transference theorem; h-Harmonics; INTERTWINING OPERATOR; REFLECTION GROUPS; POLYNOMIALS;
D O I
10.1016/j.jfa.2010.03.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a family of weight functions invariant under a finite reflection group, we show how weighted L(p) multiplier theorems for Dunkl transform on the Euclidean space R(d) can be transferred from the corresponding results for h-harmonic expansions on the unit sphere S(d) of R(d+1) The result is then applied to establish a Hormander type multiplier theorem for the Dunkl transform and to show the convergence of the Bochner-Riesz means of the Dunkl transform of order above the critical index in weighted L(p) spaces. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4052 / 4074
页数:23
相关论文
共 21 条
[1]   CESARO MEANS AND DEVELOPMENT OF MULTIPLIERS FOR SPHERICAL HARMONICS [J].
BONAMI, A ;
CLERC, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 183 (SEP) :223-263
[2]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[3]  
Dunkl C. F., 2014, Encyclopedia of Mathematics and its Applications, V2
[5]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227
[6]  
Dunkl CF., 1992, CONT MATH, V138, P123, DOI 10.1090/conm/138
[7]  
FENG D, 2007, J FUNCT ANAL, V249, P477
[8]  
FENG D, 2009, CONSTR APPROX, V29, P129
[9]  
FENG D, 2009, T AM MATH SOC, V361, P3189
[10]  
Grafakos L., 2004, Classical and Modern Fourier Analysis