Machine Learning Models for Early Prediction of Sepsis on Large Healthcare Datasets

被引:15
作者
Camacho-Cogollo, Javier Enrique [1 ]
Bonet, Isis [1 ]
Gil, Bladimir [2 ]
Iadanza, Ernesto [3 ]
机构
[1] EIA Univ, Dept Biomed Engn, Calle 23 AA Nro 5-200,Km 2 200 Via Al Aeropuerto, Envigado 55428, Colombia
[2] Clin Amer, Diagonal 75B N 2A-80-140, Medellin 50025, Colombia
[3] Univ Siena, Dept Med Biotechnol, Via Aldo Moro 2, I-53100 Siena, Italy
关键词
artificial intelligence; machine learning; CDSS; ICU; sepsis; CRITERIA; MORTALITY; INFECTION; SELECTION; DEFINITIONS; SCORE;
D O I
10.3390/electronics11091507
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sepsis is a highly lethal syndrome with heterogeneous clinical manifestation that can be hard to identify and treat. Early diagnosis and appropriate treatment are critical to reduce mortality and promote survival in suspected cases and improve the outcomes. Several screening prediction systems have been proposed for evaluating the early detection of patient deterioration, but the efficacy is still limited at individual level. The increasing amount and the versatility of healthcare data suggest implementing machine learning techniques to develop models for predicting sepsis. This work presents an experimental study of some machine-learning-based models for sepsis prediction considering vital signs, laboratory test results, and demographics using Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4), a publicly available dataset. The experimental results demonstrate an overall higher performance of machine learning models over the commonly used Sequential Organ Failure Assessment (SOFA) and Quick SOFA (qSOFA) scoring systems at the time of sepsis onset.
引用
收藏
页数:23
相关论文
共 89 条
[51]  
Medic Goran, 2019, F1000Res, V8, P1728, DOI [10.12688/f1000research.20498.2, 10.12688/f1000research.20498.1]
[52]   PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration [J].
Moons, Karel G. M. ;
Wolff, Robert F. ;
Riley, Richard D. ;
Whiting, Penny F. ;
Westwood, Marie ;
Collins, Gary S. ;
Reitsma, Johannes B. ;
Kleijnen, Jos ;
Mallett, Sue .
ANNALS OF INTERNAL MEDICINE, 2019, 170 (01) :W1-W33
[53]  
Moor M., P MACH LEARN HEALTHC, P2
[54]   Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review [J].
Moor, Michael ;
Rieck, Bastian ;
Horn, Max ;
Jutzeler, Catherine R. ;
Borgwardt, Karsten .
FRONTIERS IN MEDICINE, 2021, 8
[55]  
Nemati S, 2018, CRIT CARE MED, V46, P547, DOI [10.1097/CCM.0000000000002936, 10.1097/ccm.0000000000002936]
[56]   A correlation matrix-based tensor decomposition method for early prediction of sepsis from clinical data [J].
Nesaragi, Naimahmed ;
Patidar, Shivnarayan ;
Thangaraj, Veerakumar .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (03) :1013-1024
[57]  
Ocampo-Quintero N, 2022, MED INTENSIVA, V46, P140, DOI [10.1016/j.medine.2020.04.015, 10.1016/j.medin.2020.04.003]
[58]   Epidemiology and Costs of Sepsis in the United StatesAn Analysis Based on Timing of Diagnosis and Severity Level* [J].
Paoli, Carly J. ;
Reynolds, Mark A. ;
Sinha, Meenal ;
Gitlin, Matthew ;
Crouser, Elliott .
CRITICAL CARE MEDICINE, 2018, 46 (12) :1889-1897
[59]   A "three delays" model for severe sepsis in resource-limited countries [J].
Papali, Alfred ;
McCurdy, Michael T. ;
Calvello, Emilie J. B. .
JOURNAL OF CRITICAL CARE, 2015, 30 (04) :861.e9-861.e14
[60]   Circulating biomarkers may be unable to detect infection at the early phase of sepsis in ICU patients: the CAPTAIN prospective multicenter cohort study [J].
Parlato, Marianna ;
Philippart, Francois ;
Rouquette, Alexandra ;
Moucadel, Virginie ;
Puchois, Virginie ;
Blein, Sophie ;
Bedos, Jean-Pierre ;
Diehl, Jean-Luc ;
Hamzaoui, Olfa ;
Annane, Djillali ;
Journois, Didier ;
Ben Boutieb, Myriam ;
Esteve, Laurent ;
Fitting, Catherine ;
Treluyer, Jean-Marc ;
Pachot, Alexandre ;
Adib-Conquy, Minou ;
Cavaillon, Jean-Marc ;
Misset, Benoit .
INTENSIVE CARE MEDICINE, 2018, 44 (07) :1061-1070