Machine Learning Models for Early Prediction of Sepsis on Large Healthcare Datasets

被引:15
作者
Camacho-Cogollo, Javier Enrique [1 ]
Bonet, Isis [1 ]
Gil, Bladimir [2 ]
Iadanza, Ernesto [3 ]
机构
[1] EIA Univ, Dept Biomed Engn, Calle 23 AA Nro 5-200,Km 2 200 Via Al Aeropuerto, Envigado 55428, Colombia
[2] Clin Amer, Diagonal 75B N 2A-80-140, Medellin 50025, Colombia
[3] Univ Siena, Dept Med Biotechnol, Via Aldo Moro 2, I-53100 Siena, Italy
关键词
artificial intelligence; machine learning; CDSS; ICU; sepsis; CRITERIA; MORTALITY; INFECTION; SELECTION; DEFINITIONS; SCORE;
D O I
10.3390/electronics11091507
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sepsis is a highly lethal syndrome with heterogeneous clinical manifestation that can be hard to identify and treat. Early diagnosis and appropriate treatment are critical to reduce mortality and promote survival in suspected cases and improve the outcomes. Several screening prediction systems have been proposed for evaluating the early detection of patient deterioration, but the efficacy is still limited at individual level. The increasing amount and the versatility of healthcare data suggest implementing machine learning techniques to develop models for predicting sepsis. This work presents an experimental study of some machine-learning-based models for sepsis prediction considering vital signs, laboratory test results, and demographics using Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4), a publicly available dataset. The experimental results demonstrate an overall higher performance of machine learning models over the commonly used Sequential Organ Failure Assessment (SOFA) and Quick SOFA (qSOFA) scoring systems at the time of sepsis onset.
引用
收藏
页数:23
相关论文
共 89 条
[41]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[42]   Learning representations for the early detection of sepsis with deep neural networks [J].
Kam, Hye Jin ;
Kim, Ha Young .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :248-255
[43]   Site of infection and mortality in patients with severe sepsis or septic shock. A cohort study of patients admitted to a Danish general intensive care unit [J].
Klastrup, Vibeke ;
Hvass, Anne Mette ;
Mackenhauer, Julie ;
Fuursted, Kurt ;
Schonheyder, Henrik Carl ;
Kirkegaard, Hans .
INFECTIOUS DISEASES, 2016, 48 (10) :726-731
[44]   APACHE-II - A SEVERITY OF DISEASE CLASSIFICATION-SYSTEM [J].
KNAUS, WA ;
DRAPER, EA ;
WAGNER, DP ;
ZIMMERMAN, JE .
CRITICAL CARE MEDICINE, 1985, 13 (10) :818-829
[45]   Automated prediction of sepsis using temporal convolutional network [J].
Kok, Christopher ;
Jahmunah, V ;
Oh, Shu Lih ;
Zhou, Xujuan ;
Gururajan, Raj ;
Tao, Xiaohui ;
Cheong, Kang Hao ;
Gururajan, Rashmi ;
Molinari, Filippo ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 127
[46]   A NEW SIMPLIFIED ACUTE PHYSIOLOGY SCORE (SAPS-II) BASED ON A EUROPEAN NORTH-AMERICAN MULTICENTER STUDY [J].
LEGALL, JR ;
LEMESHOW, S ;
SAULNIER, F .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1993, 270 (24) :2957-2963
[47]   The Surviving Sepsis Campaign Bundle: 2018 update [J].
Levy, Mitchell M. ;
Evans, Laura E. ;
Rhodes, Andrew .
INTENSIVE CARE MEDICINE, 2018, 44 (06) :925-928
[48]   From local explanations to global understanding with explainable AI for trees [J].
Lundberg, Scott M. ;
Erion, Gabriel ;
Chen, Hugh ;
DeGrave, Alex ;
Prutkin, Jordan M. ;
Nair, Bala ;
Katz, Ronit ;
Himmelfarb, Jonathan ;
Bansal, Nisha ;
Lee, Su-In .
NATURE MACHINE INTELLIGENCE, 2020, 2 (01) :56-67
[49]  
Lundberg Scott M, 2018, arXiv
[50]   Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU [J].
Mao, Qingqing ;
Jay, Melissa ;
Hoffman, Jana L. ;
Calvert, Jacob ;
Barton, Christopher ;
Shimabukuro, David ;
Shieh, Lisa ;
Chettipally, Uli ;
Fletcher, Grant ;
Kerem, Yaniv ;
Zhou, Yifan ;
Das, Ritankar .
BMJ OPEN, 2018, 8 (01)