Band offset and magnetic property engineering for epitaxial interfaces:: A monolayer of M2O3 (M=Al,Ga,Sc,Ti,Ni) at the α-Fe2O3/α-Cr2O3 (0001) interface

被引:6
作者
Jaffe, John E. [1 ]
Bachorz, Rafal A.
Gutowski, Maciej
机构
[1] Pacific NW Natl Lab, Fundamental Sci Directorate, Div Chem Sci, Richland, WA 99352 USA
[2] Univ Karlsruhe, Inst Phys Chem, Lehrstuhl Theoret Chem, D-76128 Karlsruhe, Germany
[3] Heriot Watt Univ, Chem Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 20期
关键词
D O I
10.1103/PhysRevB.75.205323
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have used density-functional theory with the gradient corrected exchange-correlation functional PW91 to study the effect of an interfactant layer, where Fe and Cr are replaced by a different metal, on electronic and magnetic properties of an epitaxial interface between alpha-Fe2O3 and alpha-Cr2O3 in the hexagonal (0001) basal plane. We studied a monolayer of M2O3 (M=Al,Ga,Sc,Ti,Ni) sandwiched with five layers of chromia and five layers of hematite through epitaxial interfaces of two types, termed "oxygen divided" or "split metal." We found that both the electronic and magnetic properties of the superlattice are modified by the interfactant monolayer. For the split-metal interface, which is favored through the growth pattern of chromia and hematite, the valence-band offset can be changed from 0.62 eV (no interfactant) up to 0.90 eV with the Sc2O3 interfactant, and down to -0.51 eV (i.e., the alpha-Fe2O3/alpha-Cr2O3 heterojunction changes from type II to type I) with the Ti2O3 interfactant, due to a massive interfacial charge transfer. The band gap of the system as a whole remains open for the interfactant monolayers based on Al, Ga, and Sc, but it closes for Ti. For Ni, the split-metal interface has a negative band offset and a small band gap. Thus, nanoscale engineering through layer-by-layer growth will strongly affect the macroscopic properties of this system.
引用
收藏
页数:4
相关论文
共 18 条
[1]   QUANTUM-THEORY OF ATOMS IN MOLECULES - DALTON REVISITED [J].
BADER, RFW ;
NGUYENDANG, TT .
ADVANCES IN QUANTUM CHEMISTRY, 1981, 14 :63-124
[2]   MICROSCOPIC CAPACITORS AND NEUTRAL INTERFACES IN III-V/IV/III-V SEMICONDUCTOR HETEROSTRUCTURES [J].
BIASIOL, G ;
SORBA, L ;
BRATINA, G ;
NICOLINI, R ;
FRANCIOSI, A ;
PERESSI, M ;
BARONI, S ;
RESTA, R ;
BALDERESCHI, A .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1283-1286
[3]   ALAS-GAAS HETEROJUNCTION ENGINEERING BY MEANS OF GROUP-IV ELEMENTAL INTERFACE LAYERS [J].
BRATINA, G ;
SORBA, L ;
ANTONINI, A ;
BIASIOL, G ;
FRANCIOSI, A .
PHYSICAL REVIEW B, 1992, 45 (08) :4528-4531
[4]   Structure, band offsets and photochemistry at epitaxial α-Cr2O3/α-Fe2O3 heterojunctions [J].
Chambers, SA ;
Williams, JR ;
Henderson, MA ;
Joly, AG ;
Varela, M ;
Pennycook, SJ .
SURFACE SCIENCE, 2005, 587 (03) :L197-L207
[5]   Noncommutative band offset at α-Cr2O3/α-Fe2O3(0001) heterojunctions [J].
Chambers, SA ;
Liang, Y ;
Gao, Y .
PHYSICAL REVIEW B, 2000, 61 (19) :13223-13229
[6]   Molecular beam epitaxial growth window for high-quality (Ga,In)(N,As) quantum wells for long wavelength emission [J].
Ishikawa, Fumitaro ;
Horicke, Michael ;
Jahn, Uwe ;
Trampert, Achim ;
Ploog, Klaus H. .
APPLIED PHYSICS LETTERS, 2006, 88 (19)
[7]   First-principles study of noncommutative band offsets at α-Cr2O3/α-Fe2O3(0001) interfaces -: art. no. 205106 [J].
Jaffe, JE ;
Dupuis, M ;
Gutowski, M .
PHYSICAL REVIEW B, 2004, 69 (20) :205106-1
[8]   AB-INITIO MOLECULAR-DYNAMICS SIMULATION OF THE LIQUID-METAL AMORPHOUS-SEMICONDUCTOR TRANSITION IN GERMANIUM [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1994, 49 (20) :14251-14269
[9]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[10]   ABINITIO MOLECULAR-DYNAMICS FOR LIQUID-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 47 (01) :558-561