ilastik: interactive machine learning for (bio) image analysis

被引:1655
作者
Berg, Stuart [1 ]
Kutra, Dominik [2 ,3 ]
Kroeger, Thorben [2 ]
Straehle, Christoph N. [2 ]
Kausler, Bernhard X. [2 ]
Haubold, Carsten [2 ]
Schiegg, Martin [2 ]
Ales, Janez [2 ]
Beier, Thorsten [2 ]
Rudy, Markus [2 ]
Eren, Kemal [2 ]
Cervantes, Jaime I. [2 ]
Xu, Buote [2 ]
Beuttenmueller, Fynn [2 ,3 ]
Wolny, Adrian [2 ]
Zhang, Chong [2 ]
Koethe, Ullrich [2 ]
Hamprecht, Fred A. [2 ]
Kreshuk, Anna [2 ,3 ]
机构
[1] HHMI Janelia Res Campus, Ashburn, VA USA
[2] Heidelberg Univ, HCI IWR, Heidelberg, Germany
[3] European Mol Biol Lab, Heidelberg, Germany
关键词
SEGMENTATION; TOOL;
D O I
10.1038/s41592-019-0582-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present ilastik, an easy-to-use interactive tool that brings machine-learning-based (bio)image analysis to end users without substantial computational expertise. It contains pre-defined workflows for image segmentation, object classification, counting and tracking. Users adapt the workflows to the problem at hand by interactively providing sparse training annotations for a non-linear classifier. ilastik can process data in up to five dimensions (3D, time and number of channels). Its computational back end runs operations on-demand wherever possible, allowing for interactive prediction on data larger than RAM. Once the classifiers are trained, ilastik workflows can be applied to new data from the command line without further user interaction. We describe all ilastik workflows in detail, including three case studies and a discussion on the expected performance.
引用
收藏
页码:1226 / 1232
页数:7
相关论文
共 40 条
  • [1] Andres B, 2011, IEEE I CONF COMP VIS, P2611, DOI 10.1109/ICCV.2011.6126550
  • [2] Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
    Arganda-Carreras, Ignacio
    Kaynig, Verena
    Rueden, Curtis
    Eliceiri, Kevin W.
    Schindelin, Johannes
    Cardona, Albert
    Seung, H. Sebastian
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2424 - 2426
  • [3] Multicut brings automated neurite segmenation closer to human performance
    Beier, Thorsten
    Pape, Constantin
    Rahaman, Nasim
    Prange, Limo
    Berg, Stuart
    Bock, Davi D.
    Cardona, Albert
    Knott, Graham W.
    Plaza, Stephen M.
    Scheffer, Louis K.
    Koethe, Ullrich
    Kreshuk, Anna
    Hamprecht, Fred A.
    [J]. NATURE METHODS, 2017, 14 (02) : 101 - 102
  • [4] Beier T, 2015, PROC CVPR IEEE, P3507, DOI 10.1109/CVPR.2015.7298973
  • [5] Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets
    Belevich, Ilya
    Joensuu, Merja
    Kumar, Darshan
    Vihinen, Helena
    Jokitalo, Eija
    [J]. PLOS BIOLOGY, 2016, 14 (01)
  • [6] KNIME:: The Konstanz Information Miner
    Berthold, Michael R.
    Cebron, Nicolas
    Dill, Fabian
    Gabriel, Thomas R.
    Koetter, Tobias
    Meinl, Thorsten
    Ohl, Peter
    Sieb, Christoph
    Thiel, Kilian
    Wiswedel, Bernd
    [J]. DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, : 319 - 326
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    Carpenter, Anne E.
    Jones, Thouis Ray
    Lamprecht, Michael R.
    Clarke, Colin
    Kang, In Han
    Friman, Ola
    Guertin, David A.
    Chang, Joo Han
    Lindquist, Robert A.
    Moffat, Jason
    Golland, Polina
    Sabatini, David M.
    [J]. GENOME BIOLOGY, 2006, 7 (10)
  • [9] Machine Learning for Medical Imaging1
    Erickson, Bradley J.
    Korfiatis, Panagiotis
    Akkus, Zeynettin
    Kline, Timothy L.
    [J]. RADIOGRAPHICS, 2017, 37 (02) : 505 - 515
  • [10] Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133