Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells

被引:220
作者
Rudolph, C
Plank, C
Lausier, J
Schillinger, U
Müller, RH
Rosenecker, J
机构
[1] Univ Munich, Div Mol Pulmonol, Dept Pediat, D-80337 Munich, Germany
[2] Tech Univ Munich, Inst Expt Oncol, D-81675 Munich, Germany
[3] Free Univ Berlin, Inst Pharm, D-12169 Berlin, Germany
关键词
D O I
10.1074/jbc.M211891200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We constructed multimers of the TAT-(47-57) peptide. This polycationic peptide is known to be a protein and particle transduction domain and at the same time to comprise a nuclear localization function. Here we show that oligomers of the TAT-(47-57) peptide compact plasmid DNA to nanometric particles and stabilize DNA toward nuclease degradation. At optimized vector compositions, these peptides mediated gene delivery to cells in culture 6-8-fold more efficiently than poly-L-arginine or the mutant TAT(2)-M1. When DNA was precompacted with TAT peptides and polyethyleneimine (PEI), Superfect, or LipofectAMINE was added, transfection efficiency was enhanced up to 390-fold compared with the standard vectors. As early as after 4 h of transfection, reporter gene expression mediated by TAT-containing complexes was higher than the 24-h transfection level achieved with a standard PEI transfection. When cells were cell cycle-arrested by serum starvation or aphidicolin, TAT-mediated transfection was 3-fold more efficient than a standard PEI transfection in proliferating cells. In primary nasal epithelial cells and upon intratracheal instillation in vivo, TAT-containing complexes were superior to standard PEI vectors. These data together with confocal imaging of TAT-DNA complexes in cells support the hypothesis that the TAT nuclear localization sequence function is involved in enhancing gene transfer.
引用
收藏
页码:11411 / 11418
页数:8
相关论文
共 33 条
  • [1] Behr JP, 1997, CHIMIA, V51, P34
  • [2] Cell cycle dependence of gene transfer by lipoplex polyplex and recombinant adenovirus
    Brunner, S
    Sauer, T
    Carotta, S
    Cotten, M
    Saltik, M
    Wagner, E
    [J]. GENE THERAPY, 2000, 7 (05) : 401 - 407
  • [3] Efficient and stable gene transfer following microinjection into nuclei of synchronized animal cells progressing from G1/S boundary to early S phase
    Chida, K
    Sueyoshi, R
    Kuroki, T
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 249 (03) : 849 - 852
  • [4] TRANSFERRIN POLYCATION-MEDIATED INTRODUCTION OF DNA INTO HUMAN LEUKEMIC-CELLS - STIMULATION BY AGENTS THAT AFFECT THE SURVIVAL OF TRANSFECTED DNA OR MODULATE TRANSFERRIN RECEPTOR LEVELS
    COTTEN, M
    LANGLEROUAULT, F
    KIRLAPPOS, H
    WAGNER, E
    MECHTLER, K
    ZENKE, M
    BEUG, H
    BIRNSTIEL, ML
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (11) : 4033 - 4037
  • [5] de Lima MCP, 1999, MOL MEMBR BIOL, V16, P103
  • [6] Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells
    Eguchi, A
    Akuta, T
    Okuyama, H
    Senda, T
    Yokoi, H
    Inokuchi, H
    Fujita, S
    Hayakawa, T
    Takeda, K
    Hasegawa, M
    Nakanishi, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (28) : 26204 - 26210
  • [7] Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer
    Escriou, V
    Carrière, M
    Bussone, F
    Wils, P
    Scherman, D
    [J]. JOURNAL OF GENE MEDICINE, 2001, 3 (02) : 179 - 187
  • [8] TAT-MEDIATED DELIVERY OF HETEROLOGOUS PROTEINS INTO CELLS
    FAWELL, S
    SEERY, J
    DAIKH, Y
    MOORE, C
    CHEN, LL
    PEPINSKY, B
    BARSOUM, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) : 664 - 668
  • [9] CELLULAR UPTAKE OF THE TAT PROTEIN FROM HUMAN IMMUNODEFICIENCY VIRUS
    FRANKEL, AD
    PABO, CO
    [J]. CELL, 1988, 55 (06) : 1189 - 1193
  • [10] Arginine-rich peptides - An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery
    Futaki, S
    Suzuki, T
    Ohashi, W
    Yagami, T
    Tanaka, S
    Ueda, K
    Sugiura, Y
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (08) : 5836 - 5840