Smoothed jackknife empirical likelihood method for ROC curve

被引:56
作者
Gong, Yun [1 ]
Peng, Liang [1 ]
Qi, Yongcheng [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
基金
美国国家科学基金会;
关键词
Confidence interval; Empirical likelihood; Jackknife; ROC curve; OPERATING CHARACTERISTIC CURVES; CENSORED MEDIAN REGRESSION; TIME-SERIES MODELS; CONFIDENCE-INTERVALS; LONGITUDINAL DATA; INFERENCE; DENSITY; IDENTIFICATION; REGIONS; RANGE;
D O I
10.1016/j.jmva.2010.01.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a smoothed jackknife empirical likelihood method to construct confidence intervals for the receiver operating characteristic (ROC) curve. By applying the standard empirical likelihood method for a mean to the jackknife sample, the empirical likelihood ratio statistic can be calculated by simply solving a single equation. Therefore, this procedure is easy to implement. Wilks' theorem for the empirical likelihood ratio statistic is proved and a simulation study is conducted to compare the performance of the lproposed method with other methods. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1520 / 1531
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2012, The Jackknife and Bootstrap
[2]   Empirical likelihood tests for two-sample problems via nonparametric density estimation [J].
Cao, R ;
Van Keilegom, I .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (01) :61-77
[3]   Empirical likelihood for GARCH models [J].
Chan, NH ;
Ling, SQ .
ECONOMETRIC THEORY, 2006, 22 (03) :403-428
[4]   Empirical likelihood based confidence intervals for copulas [J].
Chen, Jian ;
Peng, Liang ;
Zhao, Yichuan .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) :137-151
[5]   An adaptive empirical likelihood test for parametric time series regression models [J].
Chen, Song Xi ;
Gao, Jiti .
JOURNAL OF ECONOMETRICS, 2007, 141 (02) :950-972
[6]   Empirical likelihood confidence regions for comparison distributions and ROC curves [J].
Claeskens, G ;
Jing, BY ;
Peng, L ;
Zhou, W .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (02) :173-190
[7]  
GRINER PF, 1981, ANN INTERN MED, V94, P555
[8]   Bayesian bootstrap estimation of ROC curve [J].
Gu, Jiezhun ;
Ghosal, Subhashis ;
Roy, Anindya .
STATISTICS IN MEDICINE, 2008, 27 (26) :5407-5420
[9]   Generalized empirical likelihood tests in time series models with potential identification failure [J].
Guggenberger, Patrik ;
Smith, Richard J. .
JOURNAL OF ECONOMETRICS, 2008, 142 (01) :134-161
[10]   Nonparametric confidence intervals for receiver operating characteristic curves [J].
Hall, P ;
Hyndman, RJ ;
Fan, YN .
BIOMETRIKA, 2004, 91 (03) :743-750