A Novel Deep Q-learning Method for Dynamic Spectrum Access

被引:3
作者
Tomovic, S. [1 ]
Radusinovic, I [1 ]
机构
[1] Univ Montenegro, Fac Elect Engn, Dzordza Vasingtona Bb, Podgorica 81000, Montenegro
来源
2020 28TH TELECOMMUNICATIONS FORUM (TELFOR) | 2020年
关键词
Cognitive radio; Reinforcement learning; OPTIMALITY;
D O I
10.1109/telfor51502.2020.9306591
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, we propose a new Dynamic Spectrum Access (DSA) method for multi-channel wireless networks. We assume that DSA nodes, as secondary users, do not have prior knowledge of the system dynamics. Since DSA nodes have only partial observability of the channel states, the problem is formulated as a Partially Observable Markov Decision Process (POMDP) with exponential time complexity. We have developed a novel Deep Reinforcement Learning (DRL) based DSA method which combines a double deep Q-learning architecture with a recurrent neural network and takes advantage of a prioritized experience buffer. The simulation analysis shows that the proposed method accurately predicts the channels state based on the fixed-length history of partial observations. Compared with other DRL methods, the proposed solution is able to find a near-optimal policy in a smaller number of iterations and suits a wide range of communication environment conditions. The performance improvement increases with the number of channels and a channel state transition uncertainty.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [21] Adaptive Learning Recommendation Strategy Based on Deep Q-learning
    Tan, Chunxi
    Han, Ruijian
    Ye, Rougang
    Chen, Kani
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2020, 44 (04) : 251 - 266
  • [22] Q-LEARNING
    WATKINS, CJCH
    DAYAN, P
    MACHINE LEARNING, 1992, 8 (3-4) : 279 - 292
  • [23] Centralized Dynamic Spectrum Allocation in Cognitive Radio Networks Based on Fuzzy Logic and Q-Learning
    Zhang Wenzhu
    Liu Xuchen
    CHINA COMMUNICATIONS, 2011, 8 (07) : 46 - 54
  • [24] Intelligent Dynamic Spectrum Access Using Deep Reinforcement Learning for VANETs
    Wang, Yonghua
    Li, Xueyang
    Wan, Pin
    Shao, Ruiyu
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 15554 - 15563
  • [25] Cognitive spectrum management in dynamic cellular environments: A case-based Q-learning approach
    Morozs, N.
    Clarke, T.
    Grace, D.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 55 : 239 - 249
  • [26] A Novel Self-tuning CPS Controller Based on Q-learning Method
    Tao, Yu
    Bin, Zhou
    2008 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, VOLS 1-11, 2008, : 1083 - 1088
  • [27] Deep Spatial Q-Learning for Infectious Disease Control
    Zhishuai Liu
    Jesse Clifton
    Eric B. Laber
    John Drake
    Ethan X. Fang
    Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 749 - 773
  • [28] Autonomous Warehouse Robot using Deep Q-Learning
    Peyas, Ismot Sadik
    Hasan, Zahid
    Tushar, Md Rafat Rahman
    Al Musabbir
    Azni, Raisa Mehjabin
    Siddique, Shahnewaz
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 857 - 862
  • [29] Deep Spatial Q-Learning for Infectious Disease Control
    Liu, Zhishuai
    Clifton, Jesse
    Laber, Eric B.
    Drake, John
    Fang, Ethan X.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (04) : 749 - 773
  • [30] Deep spectral Q-learning with application to mobile health
    Gao, Yuhe
    Shi, Chengchun
    Song, Rui
    STAT, 2023, 12 (01):