Diffusion Adaptation Strategies for Distributed Estimation Over Gaussian Markov Random Fields

被引:20
作者
Di Lorenzo, Paolo [1 ]
机构
[1] Univ Roma La Sapienza, Dept Informat Elect & Telecommun, I-00184 Rome, Italy
关键词
Adaptive networks; correlated noise; distributed estimation; Gaussian Markov random fields; sparse adaptive estimation; sparse vector; LEAST-MEAN SQUARES; NETWORKS; LMS; FORMULATION; SUBGRAPHS; ALGORITHM; SELECTION; GRAPHS; ACCESS; RLS;
D O I
10.1109/TSP.2014.2356433
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.
引用
收藏
页码:5748 / 5760
页数:13
相关论文
共 50 条
  • [31] Infrared Texture Simulation Using Gaussian-Markov Random Fields
    Xiao-peng Shao
    Xiao-ming Zhao
    Jun Xu
    Jian-qi Zhang
    International Journal of Infrared and Millimeter Waves, 2004, 25 : 1699 - 1710
  • [32] Learning non-linear structures with Gaussian Markov random fields
    Fontanella, Sara
    Fontanella, Lara
    Ippoliti, Luigi
    Valentini, Pasquale
    SPATIAL STATISTICS CONFERENCE 2015, PART 1, 2015, 26 : 38 - 44
  • [33] Infrared texture simulation using Gaussian-Markov random fields
    Shao, XP
    Zhao, XM
    Xu, J
    Zhang, JQ
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 25 (11): : 1699 - 1710
  • [34] Scalable Inference of Sparsely-changing Gaussian Markov Random Fields
    Fattahi, Salar
    Gomez, Andres
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [35] Efficient likelihood computations for some multivariate Gaussian Markov random fields
    Ippoliti, L.
    Martin, R. J.
    Romagnoli, L.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 168 : 185 - 200
  • [36] Comments on: Some recent work on multivariate Gaussian Markov random fields
    Martinez-Beneito, Miguel A.
    TEST, 2018, 27 (03) : 542 - 544
  • [37] Bayesian multiscale analysis of images modeled as Gaussian Markov random fields
    Thon, Kevin
    Rue, Havard
    Skrovseth, Stein Olav
    Godtliebsen, Fred
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (01) : 49 - 61
  • [38] A Distributed Particle Swarm Optimization Algorithm for Block Motion Estimation Using the Strategies of Diffusion Adaptation
    Jalloul, Manal K.
    Al-Alaoui, Mohamad Adnan
    2015 INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2015,
  • [39] MARLEDA: Effective distribution estimation through Markov random fields
    Alden, Matthew
    Miikkulainen, Risto
    THEORETICAL COMPUTER SCIENCE, 2016, 633 : 4 - 18
  • [40] Diffusion random Fourier adaptive filtering algorithm based on logistic distance metric for distributed estimation
    Wu, Zhe
    Ni, Jingen
    DIGITAL SIGNAL PROCESSING, 2025, 156