Diffusion Adaptation Strategies for Distributed Estimation Over Gaussian Markov Random Fields

被引:20
|
作者
Di Lorenzo, Paolo [1 ]
机构
[1] Univ Roma La Sapienza, Dept Informat Elect & Telecommun, I-00184 Rome, Italy
关键词
Adaptive networks; correlated noise; distributed estimation; Gaussian Markov random fields; sparse adaptive estimation; sparse vector; LEAST-MEAN SQUARES; NETWORKS; LMS; FORMULATION; SUBGRAPHS; ALGORITHM; SELECTION; GRAPHS; ACCESS; RLS;
D O I
10.1109/TSP.2014.2356433
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.
引用
收藏
页码:5748 / 5760
页数:13
相关论文
共 50 条
  • [11] Estimation of positive definite M-matrices and structure learning for attractive Gaussian Markov random fields
    Slawski, Martin
    Hein, Matthias
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 473 : 145 - 179
  • [12] Diffusion LMS Strategies for Distributed Estimation
    Cattivelli, Federico S.
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1035 - 1048
  • [13] Spatio-Temporal Diffusion Strategies for Estimation and Detection Over Networks
    Lee, Jae-Woo
    Kim, Seong-Eun
    Song, Woo-Jin
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (08) : 4017 - 4034
  • [14] Diffusion Strategies Outperform Consensus Strategies for Distributed Estimation Over Adaptive Networks
    Tu, Sheng-Yuan
    Sayed, Ali H.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) : 6217 - 6234
  • [15] Region selection in Markov random fields: Gaussian case
    Soloveychik, Ilya
    Tarokh, Vahid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [16] Diffusion Strategies for Adaptation and Learning over Networks
    Sayed, Ali H.
    Tu, Sheng-Yuan
    Chen, Jianshu
    Zhao, Xiaochuan
    Towfic, Zaid J.
    IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (03) : 155 - 171
  • [17] Adaptive diffusion strategies with Markov jump over networks
    Ma, Yonggang
    Liu, Junmei
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2020, 8 (01): : 388 - 404
  • [18] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    Advances in Data Analysis and Classification, 2008, 2 (1)
  • [19] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [20] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79