The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.
机构:
Univ Calif Los Angeles, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Adapt Syst Lab, Los Angeles, CA USAUniv Calif Los Angeles, Los Angeles, CA 90095 USA
Sayed, Ali H.
Tu, Sheng-Yuan
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Los Angeles, CA 90095 USA
Tu, Sheng-Yuan
Chen, Jianshu
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Los Angeles, CA 90095 USA
Chen, Jianshu
Zhao, Xiaochuan
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Los Angeles, CA 90095 USA
Zhao, Xiaochuan
Towfic, Zaid J.
论文数: 0引用数: 0
h-index: 0
机构:
Rockwell Collins Adv Technol Ctr, Cedar Rapids, IA USAUniv Calif Los Angeles, Los Angeles, CA 90095 USA